Processes and Actors:
Translating Kahn Processes to Dataflow with Firing

Gustav Cedersjo
Department of Computer Science
Lund University, Sweden
Email: gustav@cs.lth.se

Abstract—Dataflow programming is a paradigm for describing
stream processing algorithms in a manner that naturally exposes
their concurrency and makes the resulting programs readily
implementable on highly parallel architectures.

Dataflow programs are graph structured, with nodes rep-
resenting computational kernels that process the data flowing
over the edges. There are two major families of languages for
the kernels: process languages and languages for dataflow with
firing. While processes tend to be easier to write, the additional
structure provided by the dataflow-with-firing style increases the
analyzability of dataflow programs and supports more efficient
implementation techniques.

This paper seeks to combine these benefits in a principled
manner by constructing a family of translations from a process
language to dataflow with firing. In order to formally relate these
descriptions, we first introduce a notion of firing to the semantics
of Kahn processes, which allows us to give a precise definition of
equivalence between programs written in these different styles.
Then we introduce a family of translations between them and
and show that they retain meaning of a program. The presented
language and its translation has been implemented in a compiler
for the dataflow programming language CAL.

I. INTRODUCTION

Dataflow programming is a graph-based programming
model, where the nodes perform computation on the data
that flow over the edges. In the dataflow models we use in
this paper, the edges represent buffered, lossless and order-
preserving channels. Nodes may have local state variables
that are updated throughout the execution, but there are no
mutable state variables that are shared between nodes. All
communication is done by sending data items (tokens) over
the channels.

Dataflow programs exhibit a lot of concurrency, because
each node can execute independently of the other nodes
whenever it has data to process. It also tends to create small
modules with few dependencies, which is good for modularity.

There are two major families of languages for expressing the
computation in the nodes—process languages and languages
for dataflow with firing. Process languages, such as that of
Kahn [1], describe the computation in the nodes as sequential
programs that explicitly read and write on the channels. Lan-
guages for dataflow with firing are instead structured around
the concept of a firing, typically describing a set of actions
that can be fired upon given conditions, where each action
has a known number of tokens it consumes and produces.

Jorn W. Janneck
Department of Computer Science
Lund University, Sweden
Email: jwj@cs.Ith.se

process SumN() X, N =— Sum :
n; sum; x;

repeat
N — n;
sum := 0;
while n > 0 do
X — x;
sum := sum + X;
n :=n - 1;
end
Sum <— sum;
end
end

Fig. 1. A process that computes the sum of n tokens.

The difference in how the languages are structured affects how
common idioms are expressed—where process languages can
use if and while statements to control the execution, languages
for dataflow with firing use the firing conditions of the actions
to achieve the same control flow.

Figure 1 and 2 show a program that computes the sum of
n tokens, both as a Kahn process and as dataflow with firing.
The process version is arguably much simpler, because the
control flow better follows the text of the program.

Dataflow programming languages are often associated with
a particular execution model or a few different models. Kahn
processes, for example, are typically executed using threads
or with demand-driven cooperative scheduling, as described
in [2], and this paper introduces another execution model for
Kahn processes. For dataflow with firing, there are several
execution models that take advantage of the firings to create
an efficient implementation.

Synchronous dataflow [3] is a model where the number of
tokens an actor consumes and produces is the same in every
firing. For programs written in this model and for a slightly
more general model called cyclo-static dataflow [4], a schedule
can be completely determined at compile-time, removing the
need for scheduling decisions at runtime. However, not all
parts of a program need to be cyclo-static or synchronous data-
flow to take advantage of these implementation techniques, as
demonstrated in [5] for Streamlt, and in [6] for CAL. Also, [7]
and [8] show in two different ways that actors with dynamic
token rates can be composed, effectively creating a semi-static

actor SumN() X, N =— Sum :

n; sum;
start: action N: [nbr] —
do

sum := 0;

n := nbr;
end
add: action X:[x] =
guard n > 0
do

sum := sum + X;

n :=n - 1;
end
done: action — Sum: [sum]

guard n <= 0 end

schedule Start:

Start (start) — Sum;
Sum (add) — Sum;
Sum (done) — Start;
end
end

Fig. 2. An actor that computes the sum of n tokens.

schedule of the composed actors. Section VI-A discusses a few
implementations of dataflow with firing, comparing them to a
traditional process implementation.

There are also other benefits of the firing semantics. One
is the possibility to record traces of the action firings and
create a dependency graph between the firings of a particular
execution. In [9], such traces are used to guide the choice of
implementation parameters in a design space exploration of a
dataflow program.

In this paper we combine the simplicity of processes with
the benefits of having them represented as dataflow with firing
by designing a Kahn process language with a translation to
dataflow with firing. The main contributions of this paper are
the translation from the Kahn process language to dataflow
with firing, and a way of expressing action firings in the
denotational semantics of Kahn processes. Additionally, we
elaborate on how the Kahn process source program can be
transformed to the recursive functions of its denotational
semantics—a detail that is only sketched by Kahn [1].

This paper continues in section II and III with some back-
ground on Kahn processes, the process model that we have
chosen to implement, and then a short introduction to CAL,
the target language of the translation. Section IV introduces
a process language whose translation to CAL is presented in
section V. Section VI discusses the language design and the
translation to dataflow with firing. Related work is discussed
in section VII, and finally, section VIII concludes the paper.

II. PROCESS MODEL

The process model we use in this paper is the one of
Kahn [1], often referred to as Kahn process networks. A
process is described as a sequential program that can com-
municate with other processes via blocking reads and non-

blocking writes on channels. Kahn showed that a network
of such processes always produces the same values on the
channels, irrespective of how their executions are interleaved.

A. Semantics

The semantics of Kahn processes have been described in [1],
and its details are beyond the scope of this paper. We will,
however, discuss some of its building blocks to show the
correctness of the translations we are presenting in this paper.

The semantics is denotational rather than operational, and
the processes are described as functions on sequences of
values. The sequences may be of finite or denumerably infinite
length. There is a complete partial order on sequences called
the prefix order C, with a C b if and only if a is the initial
segment of b. The functions that describe the processes must
be monotonic on this partial order, meaning a C b = f(a) C
f(b). Another way to describe prefix monotonicity is that if
such a function applied to sequence a yields the result r, and
the same function is applied to sequence b that starts with a,
then the result will start with . The monotonicity describes
an important property of the execution of processes, viz. that a
process cannot change the output it has already produced. The
functions must also be Scott-continuous, which on the prefix
order means that in addition to being monotonic, a function
may not depend on whether an input sequence is finite or
infinite. Kahn processes are by construction Scott-continuous
functions.

A network of processes is described as an equation system
where the data on the communication channels are variables
and the processes are continuous functions over these vari-
ables. The semantics of the program is the smallest solution
to the equation system with respect to the prefix order.
This solution is unique and can be computed, or if infinite,
arbitrarily well approximated, with fixed point iteration. A
consequence of the solution being unique is that the execution
order of the processes cannot affect the data they produce.

III. CAL

CAL [10] is a language for describing actors of dataflow
with firing, originally developed as part of the Ptolemy project
[11]. A variant of CAL has been standardized by MPEG in
ISO/IEC 23001-4:2014 for describing video codecs.

An actor consists of ports, state, actions and additional
constraints on when actions can be fired. Figure 2 shows an
actor written in CAL. It has three actions, tagged with start,
add and done. Two of the actions also have a guard, i.e. a
boolean expression that must be true for the action to fire. The
actions are also, in this example, constrained by an action
schedule—a finite state machine that controls which actions
can be fired.

CAL can express computation that is not possible using
Kahn processes, namely actors that are not monotonic on the
prefix order or not even deterministic. The Merge actor in
figure 3 is an example of a non-deterministic actor. It takes a
token either from port X or port Y and puts its value on Z.

actor Merge() X, Y= 12
action X:[v] = Z:[v] end
action Y:[v] = Z:[v] end

end

Fig. 3. Non-deterministic merge actor

process A Aowchart _ B denotat19na1
semantics
C
, denotational
flowchart B ;
actor . “ — - semantics
with actions . .
with firing

Fig. 4. An overview of the transformations presented in this paper.

IV. PROCESS LANGUAGE

In this section we describe a small language for writing
Kahn processes, which we in the next section translate to
dataflow with firing. Figure 4 shows an overview of the
transformations that are performed on the processes. We will
refer to this figure for each transformation we introduce.

A. Language Grammar

The grammar of the language is shown in figure 5. Some
parts of the grammar are not described in this paper, namely
expression, identifier and type, and for those pro-
ductions we use the corresponding productions from the CAL
language report [10]. The process example in figure 1 is
written in this language, and later in the paper, there are a
few more examples.

A process begins with the keyword process followed
by the name of the process. Then follows a list of formal
parameters in parentheses, and the actual parameters for these
are bound at compile time, when instantiating the dataflow
graph. After the parameter list comes the input and output
port declarations. These are also bound to the communication
channels when instantiating the graph.

The body of the process starts with a list of variable
declarations, followed by the process description. The pro-
cess description is either repeated, indicated by the repeat
keyword, or just executed once, in case the begin keyword
is used. The statements in the process description is what the
process executes at runtime.

There are five kinds of statements of which three of them are
known from many other imperative programming languages: if
statements, while loops and assignments. The read and write
statements are central for the semantics of Kahn processes.
The read statements look like this

Port — variable
and reads one token from Port, which must be an input port,

and assigns the value to variable. The read is blocking,
which means that the execution will not proceed unless there

entity = "process" identifier " (" parameters ")"
ports "==>" ports ":"
{declaration}
process
"end".
parameter = [type] identifier.
parameters = [parameter {"," parameter}].
port = [type]l identifier.
ports = [port {"," port}].
declaration = [type] identifier
[":=" expression] ";".
process = ("repeat" | "begin") {statement} "end".
statement = if | while | read | write | assignment.
if = "if" expression "then" {statement}
["else" {statement}] "end".
while = "while" expression "do" {statement} "end".
read = identifier "-->" identifier ";".
write = identifier "<--" expression ";".
assignment = identifier ":=" expression ";".

Fig. 5. Simplified grammar of a process language

is a token available. The write statements, however, are non-
blocking and look like this

Port <— expression

The expression is evaluated and the value is written to Port,
which must be an output port.

B. Semantics

The semantics of this language is the semantics of Kahn
processes, as described in [1], where the processes are viewed
as functions on sequences. We use [v1, vz, ..., v,] to denote a
sequence of n elements, and [v1,ve, .. .] to denote a sequence
of infinite length. Concatenation, denoted X.Y’, is the sequence
that starts with X and continues with Y, or just X if X is
infinite. We use [] to denote an empty sequence.

The first step towards describing a process as a function
on sequences is to describe it as a flowchart with one node
in the flowchart per statement. This step is labelled A in the
overview in figure 4.

The read and write statements are represented by input/out-
put nodes (parallelograms). Assignments are represented by
process nodes (rectangles). The branching statements if and
while are represented by groups of nodes: one decision node
(diamond) for the condition test, one subchart for each alterna-
tive execution path, and a connection node (small circle) where
the control flow converges. Entry points and exit points are
represented by terminal nodes (rounded rectangles), labeled
start and stop, respectively.

The flowchart is then translated to a function on sequences.
This is transformation B in the overview in figure 4. The

denotational semantics of Kahn processes is defined on this
form, and Kahn refers to the methods of McCarthy [12] on
how to do the translation.

Each node in the flowchart is translated to a function that
refers to its successor nodes for the continued execution. The
functions are parameterized by the state variables and input
streams. For simplicity, we only consider one state variable v,
one input sequence X and one output sequence, but later we
generalize this to tuples. A start node start initializes the state
of the process,

start(v, X) = next(v', X) (1)

where v is the initial value of v and next represents the
successor node in the flowchart. A stop node stop represents
the end of the execution and is therefore the empty sequence.

stop(v, X) =[]

A connection node conn is defined as its successor next and
can be omitted. An assignment node is defined as

assign(v, X) = next(f(v), X)

where f computes the new value of v and next is the successor
node. A conditional node, cond has two possible successor
nodes, true and false, and is defined as

true(v, X),
false(v, X),

if p(v)
otherwise

cond(v, X) = {

where p is the predicate on the state variables that is the
condition of the node. A write node write that writes a value
f(v) derived from the state to the output port is defined as
follows.

write(v, X) = [f(v)].next(v, X) (2)

Finally, a read node that reads a token and assigns it to v is
defined as

next(h,T) if X =[h].T

i if X =[] @

read (v, X) = {
where the execution stops if there is no token available. The
description of a process is completed by a function that hides
the state variables and is defined as the start function with any
values of the variables.

process(X) = start(L, X)

If a process function is constructed using only the functions
described above, the process will be monotonic on the prefix
relation, because extension of an input to the function can
only affect extensions of its output. It will also be continuous,
because the function cannot depend on the finiteness of the
sequences. The function therefore represents a Kahn process.

To generalize this to handle more state variables and input
ports and output ports, the variables can be represented by
a tuple, and the input sequences by a tuple of sequences
and the output by a tuple of sequences as well. We extend
the prefix order to tuples of sequences with (Xy,...,X,) C

process Delay () X =Y :

v := 0;
repeat
Y <— v;
X — vy
end
end

Fig. 6. A process describing the unit delay.

Fig. 7. A flowchart of the Delay process in figure 6 with numbered nodes.

(Y1,....Y,) <= X CYIA...ANX, CY, and de-
fine the concatenation operation (X1,..., X,).(Y1,...,Y,) as
elementwise concatenation (X;.Y7,...,X,.Y,). The assign
function will only change one of the elements of the variable
tuple, read will only read from one of the streams to one of
the variables, and write will only add to one of the elements
of the output sequence tuple.

As an example of this translation, the Delay in figure 6
is first transformed to the flowchart in figure 7. The nodes of
this flowchart are numbered 1 to 3, which corresponds to the
functions Delay, to Delays. These functions are defined as
described above.

Delay, (v, X) = Delay4(0, X) by (1)

Delay, (v, X) = [v].Delays(v, X) by (2)
) Delay,(h,T) if X = [h].T

Delays(v, X) = {H ix_ O

The process is defined as follows.
Delay(X) = Delay, (L, X)
We can now simplify function Delays by substituting Delays,

[h]. Delays(h, T) if X = [1].T

Delays (v, X) = {H if X =]

Now we can see that Delay; is equivalent to its X argument
and further simplify it to
Delays(v, X) = X

Similarly we can simplify Delay by substituting Delay, and

then Delay, and then finally Delay; and get the following.
Delay(X) = [0.X

This definition is a very compact description of the process
that captures the essence of the unit delay.

Fig. 8. A cyclic dataflow program with the Delay process.

Figure 8 shows a small cyclic network with one Delay
process. The corresponding equation system in the semantics
of Kahn processes is

“4)

Y = Delay(X)
X=Y

In general, there are several solutions to the equation systems
of Kahn process networks, but the smallest solution with
respect to the prefix order is what defines the semantics. In
this case, the smallest solution to the equation system in (4)
has an output sequence that is an infinite sequence of zeros:
Y =10,0,0,...].

V. TRANSLATION TO DATAFLOW WITH FIRING

The translation from process to dataflow with firing is done
in three steps. (The corresponding labels from figure 4 are
shown in parentheses.)

1) Construct a flowchart of the process. (A)
2) Group nodes in the flowchart into actions. (C)
3) Create a dataflow actor from the actions. (D)

The first step makes it easier to reason about the statements
in the code. The second step cannot be done arbitrarily
without the risk of changing the semantics of the program.
We therefore show how this step can be performed without
changing what the process computes by making sure that the
result of B and B’ in figure 4 are the same. In the third step,
we take a process with actions and create a CAL actor with
the same control flow.

A. Grouping nodes into actions

A dataflow actor is executed in atomic steps, called action
firings. An action can only be fired if its conditions are
fulfilled. We call these firing conditions. The tokens that an
action reads, for example, must be present in order to fire. It
also means that the number of tokens that an action requires
must be known before firing that action. Typically, but not
necessarily, it is even known at compile-time.

An example of a possible action is a chain of read, write and
assignment nodes in the flowchart. Because a chain only has
one possible control flow, where each statement is executed
exactly once, the number of tokens that will be consumed
and produced by executing a chain is known at compile-
time. However, an action grouping is not correct just because
it contains valid actions. It must also represent the same
sequence-function.

To determine if a process with its statements grouped to
actions is equivalent to the original process, we add action
firing to the functions on sequences and check if the function
is still the same. Referring to figure 4, we check that the results
of B and B’ are the same.

If an action a is a sequence of statements that start with s
and reads n tokens from X, then the atomicity is modeled as

~)s(v, X) if X = [hy, ...
alv, X) = {[] otherwise.

hn).T
B 5)

The execution "continues" only when the input sequence X
is long enough to execute the whole sequence of statements.
The definition in (5) can be generalized to handle more than
one input sequence by adding more firing conditions.

As an example, we use the Delay process in figure 6 and
its corresponding flowchart in figure 7. Let the write statement
of node 2 together with the read statement of node 3 be an
action. The requirement for this action to fire is that X has at
least one element, because of the read statement. The effect
of making an action of statement 2 and 3 is that the write
will not be executed unless there is a token available for the
read. To show that this translation is incorrect, we construct
the function that corresponds to this translated process.

Delay' (X) = Delayy (L, X)

Delay’ (v, X) = Delay.,(0, X) by (1)
, Delayy(v, X) if X = [h].T
Delay’, (v, X) = , by (5)
elay, (v, X) {H ix_y by
Delayy (v, X) = [v]. Delays (v, X) by (2)
, [Delay/,(h,T) it X = [n].T
Delays(v, X) = {[] i X =[] by (3)

This set of functions differs from the Delay functions in
the following two ways. Delay’ contains a function Delay,
that describes the atomicity of Delay, and Delays, and all
references to Delay, are instead references to Delay’,.

A translation is correct only if its function is equivalent to
the original function. If we apply Delay and Delay’ to the
empty sequence

Delay([]) = [0]
Delay'([]) = Delay' (L, []) = Delay, (0, []) =[]

we see that the translation is incorrect.

B. Action grouping schemes

We will present a series of action grouping schemes that
yield correct translations from processes to dataflow with
firing. We only consider grouping schemes that group chains of
statement nodes, i.e. sequences of read, write and assignment
statements. The condition nodes are translated to their own
actions without any firing conditions that only designate its
successor action in the execution.

There is a trivial action grouping that is always correct, that
is the grouping where each statement becomes its own action.
In this grouping, only the actions with a read statement will
have a firing condition. This condition is also the same as the
condition of the read statement itself. Let a be the action with
one read statement 7,

X — v;

whose successor is n.

alo _ r(v,X) if X =[h].T
CX= wx=g)

(o _ n(h,T) if X =[h].T
e

We can see that @ = r. For an action a¢ with a write or
assignment statement s, the action is equal to the statement,
because the action has no firing condition.

o, X) = {s(v,X)

always

[] never

This grouping results in very fine grained actions, but
dataflow actors are usually not written in this way, firstly
because it is very tedious to write that many actions, secondly
because it is usually not necessary, and thirdly because it is
usually more efficient to write fewer and larger actions. The
actions need to be scheduled, either at compile time or at
runtime, and the more actions to schedule, the more time
it tends to take. For these reasons, we study some grouping
schemes with larger actions as well.

1) Regular expressions on sequences of statements.: To
describe different grouping schemes, we use regular expres-
sions over sequences of statements. Let r, w and a denote
the set of read, write or assignment statement, respectively.
Alternation is denoted x|y which is the union of all sequences
in and y. Concatenation xy is the set of sequences that
are concatenations of a sequence in x with a sequence in y.
The Kleene star z* represents concatenation of any number
of sequences in z, including zero sequences. As an example,
the expression (r|a)* denotes any sequence of read and
assignment statements.

2) Actions with only writes and assignments.: If sequences
of write and assignment statements, (w|a)*, are grouped to
actions, the resulting function of the action will be identical
to the function of the statements. Write and assignment
statements do not read any tokens, and the action will therefore
have no conditions. Let s be the first statement in a sequence
in (w|a)*, followed by the rest of the process, and a be an
action with these statements.

s(v, X)
[] never

1
a(v, X) = always

Action q is trivially equal to statements s.

3) Actions with only reads and assignments.: 1If sequences
of read and assignment statements, (r|a)*, are grouped to
actions, the resulting function will have conditions on the
lengths of the sequences corresponding to the number of read
statements for each stream. Assume the read statements of an

action a reads n tokens from X, the action will then be defined
as

s(v,X) if X =[hq,...
[] otherwise,

a(v, X) = fn).T

where s represents the execution starting at the first statement
in the action. Since the statements of the action doesn’t
produce any output, we know that when the sequence is shorter
than what all statements read, the output is empty.

Yk < n.s(v,[x1,...,25]) =[]
That is also true for the action.
VE < n.a(v,[z1,...,28]) =[]

When the sequences, however, are long enough for all the read
statements of the action, we get the following.

VE > n.a(v, [21,...,2k]) = s(v, [21, ..., 2k])

Both when the inputs are sufficiently long and when they are
not, the action represents the same function as its statements.

4) Actions with reads and assignments and then writes
and assignments.: The two regular expressions above can
be combined to (r]|a)*(w|a)*, accepting first reads and as-
signments and then writes and assignments. To study what
affect this action has on the function, we first study the
case with two consecutive actions a; with statements from
(r|la)* and as with statements from (w|a)*. As we have seen
earlier, action a; requires all tokens that it reads to be present
before proceeding, and action as does not require anything
to continue. An action a that contains the statements of a;
followed by ao, will have the same conditions as a;, because
as does not have any conditions. The function that represents
a will therefore be identical to the function that represents
a1 followed by ao. To illustrate this, assume the simple case
with one read statement r followed by one write statement w
followed by another statement n. First, we make actions a,
of r and a,, of w. The functions for this now looks like the

following.
(0, X) r(v,X) if X =[h].T
” ﬁX:H
{ if X =[n.T
\ it X =[]
ay (v, X) = w(v, X

()H()

The important part is that a,, will be the same for all groupings
in (w|a)*, making it possible to use w directly wherever a,,
is used and eliminate a,,.

wfo. x) < T X) X =[n.T
X = if X =]
oy W)X =[BT
(%)] if X =]

If instead we make one action a of both r and w we get the
same functions.

a(U7X> = T(U’X) lf X i [h]T
(] if X =]

r(v, X) = w(h,T) %fX i [h].T
(] if X =]

w(v, X) = [v].s(v, X)

Grouping statements by (r]a)*(w|a)* to actions preserves the
semantics of the process.

C. Translation to dataflow actor

From the flowcharts with actions, the translation to dataflow
with firing (transformation D in figure 4) is quite straightfor-
ward. We use CAL as the target language for this last step, and
we explain the translation with the SumN process in figure 1
and the actions of figure 9

When the actions of a process are identified, they are
translated to CAL actions that perform the same task, and each
action gets a unique action tag. We call these actions statement
actions. From the grouping in figure 9, the following actions
are constructed.

a:
action N: [temp] =

do
n := temp;
sum := 0;
end
b:
action X:[temp] =
do
X := temp;
sum := sum + X;
n :=n - 1;
end

c:
action = Sum: [sum] end

From the decision node, two actions are constructed, one
that can be fired when the condition is true, and one when the
condition is false. We call these pairs of condition actions.
Note that these actions neither consume nor produce any
tokens.

d_true:
action —
guard

n >0
end

d_false:
action —
guard
not
end

(n > 0)

Finally, an action schedule is created to ensure that the actor
has the same control flow as the original process. The schedule
will have one state for each statement action, and one state
for each pair of condition actions. The transitions are then
constructed to reflect the control flow of the process.

schedule A :

A (a) — D;
D (d_true) — B;
D (d_false) — C;
B (b) — D;
C (¢c) — A

end

The execution starts in state A with action a that reads how
many numbers should be summed, and continues to state D.
In D, there are two actions, one that can be executed when
n > 0 and another action otherwise. Depending on which of
the two is fired, the execution proceeds to either B or C. State B
represents the body of the loop and when action b is fired the
execution proceeds with the loop condition in state D again.
After the loop, in state C, action c is executed an the output
is produced. The execution then continues in state A to start
a new summation.

The start node of the flowchart corresponds to the variable
initialization of the process, and this is just copied to the
resulting actor. This example does not have any stop node, but
stop nodes are represented by states in the schedule without
any transitions that leaves them.

The end result is not as polished as the handwritten CAL
version in figure 2, but it is not far from it.

Sum <— sum;

Fig. 9. Flowchart of the SumN process in figure 1 with an example grouping.

VI. DISCUSSION
A. Implementation efficiency

Even though this paper is not about efficient implementa-
tions of dataflow with firing, its existence is highly relevant
for this work. Some restricted classes of dataflow with firing,
such as synchronous dataflow and cyclo-static dataflow are
well known for their efficient implementation techniques, but
even dynamic dataflow can be efficienly implemented. To
demonstrate the efficiency compared to a traditional process
implementation, we implemented the proposed language and

LEFSR Y x Even YHX Inc YHX Sum ‘

Fig. 10. A program with four processes. LFSR is a linear feedback shift register, producing the n = 107 first numbers of a maximum length sequence of
16 bits, followed by a 0. Even filters out all odd values, forwarding only the even numbers to Inc, that increments the numbers by 1. Sum computes the
sum of all numbers until it gets a 1 (the incremented 0 at the end of the stream) and prints the sum.

o
|

_
N
o 0 .
g .
=]
o 4- °
S
= 5
3 ® . o o .
= 2 - L] () ° ° o []
4]
0-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(=) - [\l <t el el o <t 0 Nel o < 0 O (] <
— o o o wy — (] = (=N (=)} o0
- N g} (=} o (=3 — [oe)
— (S} < o0 2
Buffer size
Fig. 11. Execution time of the Go program with different buffer sizes, where

0 indicates rendezvous communication.

TABLE I
EXECUTION TIME OF THE PROGRAM IN FIGURE 10

Mean (ms) Standard deviation (ms)
Go (gc) 1811.4 13.6
Kahn processes (Tycho) 203.0 3.7
Kahn processes (Tycho)? 158.3 2.8
Kahn processes (T§cho)P 64.9 2.5
C (Clang)® 64.6 2.8

2 compiled with actor merging
b compiled with actor merging and buffer to variable conversion
¢ a sequential program that computes the same result

the translation to CAL in the Tjcho dataflow compiler and
designed a small program with four processes, depicted in
figure 10. We made two process implementations; one in our
proposed language that we compiled using the T¥cho dataflow
compiler, and one with goroutines in Go that we compiled
using gc!. To get an indication of how much overhead the
parallel descriptions induces in terms of scheduling and book-
keeping, we also made a sequential implementation in C that
performs the same computation using a single loop.

In the Go implementation, the size of the channels that
connects the goroutines affects the performance significantly.
Figure 11 shows the execution time for buffer sizes ranging
from O to 2048, where 0 means rendezvous communication.
Using large buffers in the program implemented with T§cho
did not result in any significant performance difference.

The Tycho dataflow compiler can merge actors using actor
machine composition, as described in [7], similar to what
is done with RVC-CAL actors using the Open RVC-CAL
Compiler (Orcc) in [8]. The resulting merged actor does not
need to check that state of the channels that are connected to

IThe other official Go compiler—gccgo—produced slower programs for
this example.

itself. If these self-loop channels are of size 1, they can be
replaced by variables, which is also done by Tycho. Table I
shows the execution time of five different implementations:

1) the Go implementation with channel sizes set to 1024,

2) the Kahn process implementation compiled with T¥ycho,

3) the Kahn process implementation compiled with Tjcho
with actor merging,

4) the Kahn process implementation compiled with T¥cho
with actor merging and with buffers converted to vari-
ables, and

5) the sequential C program.

The Kahn process implementations that are transformed to
dataflow with firing are clearly faster than the goroutine im-
plementation, even without actor merging. With actor merging
and the buffer to variable transformation, the programs is as
fast as the sequential C program.

All measurements were performed on a computer with a
quad-core 2 Ghz Intel Core 17 processor running OS X, and
the sequential C program and the C programs produced by
Tycho were compiled with Clang using the flag —02.

B. Program simplicity

We believe that many dataflow actors could be much simpler
described as processes, most importantly because the control
flow of a process better follows the text flow of the source
program than it would do in a dataflow-with-firing style. To
get an indication on what kinds of actors would benefit from
being expressed as processes, we have identified some patterns
commonly used in CAL actors by studying the example ap-
plications from orc-apps*—a collection of CAL applications.
The patterns we identified are the following:

1) Actors with only one action.

2) Fixed sequences of actions in the sense that action B
always follows action A.

3) Iterative token production or consumption with an un-
known number of tokens.

4) Actors that select different actions depending on the
value of a particular token or state variable.

In our opinion, pattern 1 is often clearly expressed in CAL
and we see no point in rewriting such actors in a process
style. However, expressing pattern 2, 3 and 4 is, in our opinion,
more complex in CAL than it is in our process language. Fixed
sequences of actions (pattern 2) involve at least two actions
and an action schedule. When trying to follow the control flow
of such an actor, the reader must consult the action schedule
to see in which order the actions are fired. When expressed
as a process, this pattern is simply a sequence of statements.

Zhttps://github.com/orcc/orc-apps

TABLE II
NUMBER OF TOKENS IN THE SOURCE CODE OF THE ACTORS AND THEIR
RESPECTIVE PROCESSES.

Actor Proc. Ratio Patterns
SyntaxParser® 682 412 60% 2,3, 4
Mgnt_DCSplit® 97 107 110%
Algo_Byte2bit® 122 81 66% 2,3
Algo_SelectMB_4¢ 491 200 41% 2,3, 4
Algo_PictureRecon. . . Sat. ..b 355 255 T2% 2,4
KeySchedule® 757 629 83% 2

2 from JPEG decoder

b from MPEG-4 Part 2 decoder
¢ from MPEG-4 AVC decoder
d from AES cipher

Pattern 3 and 4 can in our process language be expressed by
(respectively) a while-loop and if-statement, but encoding
the same pattern in a CAL actor requires at least two actions
whose firing conditions only differ in a guard expression,
representing the branching condition.

A review of existing CAL applications and the feasibility
of translating them to processes is out of the scope for this
paper. We have, however, collected a few actors that use the
patterns described above and translated them to our process
language. We have not measured how readable they are, or
how well the program text follows the control flow, but since
the simplified control flow also results in smaller programs, we
have measured the size of the programs in number of source
code tokens. As the result in table II shows, the actor with only
one action (pattern 1) uses more tokens in the process version
than the actor version, but the other patterns are expressed
using fewer tokens in their process versions.

C. Language Design

The first objective of the language design is to enable pro-
grammers to write processes and have them executed as actors.
The second objective is to make it easy to use processes in
CAL programs. We have made some design choices motivated
by these objectives.

The look and feel of the language resembles CAL to a large
extent. The reason for this decision is to make it easier for CAL
programmers to start using the language. Not only does it look
like CAL, the types, statements and expressions are borrowed
from CAL as well. By representing and computing values
in the same way, the interaction between the two languages
becomes straightforward. In the larger version of the language
that is implemented in the T§ycho dataflow compiler, the
process description is actually implemented as a new language
construct for CAL actors, rather than a separate language of
its own.

D. More general groupings

We saw in the Delay’ example that actions that start with
writes and continue with reads are not equivalent to just
the statements themselves. There are, however, other correct
grouping schemes that recognize larger actions. The schemes
we have looked at all consist of sequences of statement nodes,
but there are examples where loops and conditionals can be

part of actions as well. If, for example, the two execution paths
of an if statement have the same read and write pattern,
they could be considered for inclusion in the same action.
The same is true for loops where no communication happens.
The grouping schemes that we have shown in this paper are
therefore not the most coarse-grained.

VII. RELATED WORK
A. Language

The process language we introduced makes it possible to
write dataflow programs as combinations of processes and
dataflow with firing, but it is not the first example of such
combination. Streamlt [13] is a language for Synchronous
dataflow—a flavor of dataflow with firing where the number
of tokens consumed and produced by an actor is the same
on every invocation. In version 2.1 of Streamlt the restriction
of a fixed input and output rate was lifted, effectively making
Streamlt a language for expressing both synchronous dataflow
and Kahn processes. The implementation in [5] also treats
them separately, heavily optimizing the parts with fixed token
rates and dynamically scheduling all interaction that deals with
dynamic token rates. Our approach is instead to unify the two
by translating the process to dataflow with firing. In Streamlt,
however, the filters with dynamic token rates can not in general
be translated to their current model for dataflow with firing,
synchronous dataflow, because that model is not expressive
enough.

B. Translation

In [14], Falk et al. presents a translation from Kahn
processes expressed in SystemC to dataflow with firing by
constructing a control flow graph in which all read statements
precede the write statements in the basic blocks. This is equiv-
alent to the most general action grouping scheme presented in
this paper. The novelty of our work is the connection to the
semantics of Kahn processes to show that the action grouping
is correct.

One aspect of this work is that it enables programmers to
write programs in an imperative style and have it executed
with a different execution model that we believe is better
in many ways. Related to this, Capriccio [15] is a threading
package for C that enables programmers to write threaded code
with blocking operations, have it executed using cooperatively
scheduled coroutines and event-based operations instead of
blocking ones. Similarly, Tame [16] and the work of Adya
et al. [17] both try to unify the models of threaded with
event-driven programs, partly using program transformations
not unlike those we do.

Even though there are similarities between these systems
and ours, we believe that the challenges differ very much. One
of their main challenge is memory management for automatic
variables. That is not an issue for our language, because the
processes are essentially stack-free at the points where they
need to be. Our main challenge, on the other hand, is to make
sure that the exact semantics of Kahn processes is retained in
the translation.

In [18], Lee shows a translation from dataflow with firing
to Kahn processes, which is the reverse of our translation, and
gives conditions on when this translation is possible.

C. Process model

In this work, we use Kahn process networks as our process
model. There are other well-known process models, such as
Communicating Sequential Processes [19] or pi calculus [20].
We chose Kahn process networks over these calculi because
the communication model of Kahn process networks closely
resembles the one of dataflow with firing. Because of this simi-
larity, several aspects of combining Kahn process networks and
dataflow with firing have already been studied. In [18], Lee
shows that a certain class of dataflow with firing is determinate
by transformation to Kahn process networks. In [21], Kienhuis
and Deprettere introduce a model for dataflow with firing that
is able to describe Kahn process networks.

When proving the equivalence of the programs before and
after action grouping, we extended the Kahn process model
with a notion of actions. There is a related model, called
Stream Based Functions [22] that instead extends a model for
dataflow with firing with the expressiveness of Kahn processes.
This model is used in Compaan [23] to transform nested loop
programs to Kahn process networks.

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced a Kahn process language and a family
of translations from this language to dataflow with firing and
CAL. It enables programmers to write their dataflow programs
as processes and still use the efficient implementation tech-
niques and analysis tools that available for CAL. For software
implementations, if the number of processes exceeds the
number of processors, which is the most common case, their
corresponding actors can be merged to reduce communication
overhead using actor machine composition [7] or by merging
CAL actors [8]. For programmable hardware, Xronos have
been shown to synthesize hardware directly from the RVC-
CAL reference implementation of an MPEG-4 decoder [24].
On the analysis side, the profiling infrastructure of TURNUS
uses execution traces of CAL programs to explore the design
space of their implementations [9].

We have also elaborated on the translation from a Kahn
process language to its denotational semantics, introducing a
way of reasoning about process languages, building upon the
works of Kahn [1] and in turn McCarthy [12]. This way of
reasoning enabled us to introduce the concept of an action to
the semantics of Kahn processes.

To conclude the paper, we have shown a way of giving
programmers the simplicity of writing processes and at the
same time treat them as CAL actors with all of its benefits. As
future work, on the language side, we would like to investigate
ways of letting programmers affect the action grouping. We
would also like to integrate more features of CAL into the
process language and vice versa. On the translation side, we
would like to study action grouping schemes that can identify
even larger actions.

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

(21]

[22]

(23]

[24]

REFERENCES

G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in In Information Processing’74: Proceedings of the IFIP
Congress, vol. 74, 1974, pp. 471-475.

G. Kahn and D. MacQueen, “Coroutines and networks of parallel
processes,” 1976.

E. Lee, D. G. Messerschmitt ez al., “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow,” Signal Processing, IEEE Transactions on, vol. 44, no. 2, pp.
397-408, 1996.

R. Soulé, M. 1. Gordon, S. Amarasinghe, R. Grimm, and M. Hirzel,
“Dynamic expressivity with static optimization for streaming languages,”
in Proceedings of the 7th ACM international conference on Distributed
event-based systems. ACM, 2013, pp. 159-170.

R. Gu, J. W. Janneck, M. Raulet, and S. S. Bhattacharyya, “Exploiting
statically schedulable regions in dataflow programs,” Journal of Signal
Processing Systems, vol. 63, no. 1, pp. 129-142, 2011.

G. Cedersjo and J. W. Janneck, “Software code generation for dynamic
dataflow programs,” in Proceedings of the 17th International Workshop
on Software and Compilers for Embedded Systems. ACM, 2014, pp.
31-39.

J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and O. Sil-
ven, “Actor merging for dataflow process networks,” Signal Processing,
IEEE Transactions on, vol. 63, no. 10, pp. 2496-2508, 2015.

S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot, G. Roquier,
M. Mattavelli, and J. W. Janneck, “Methods to explore design space
for mpeg rmc codec specifications,” Signal Processing: Image Commu-
nication, vol. 28, no. 10, pp. 1278-1294, 2013.

J. Eker and J. W. Janneck, “CAL language report: Specification of the
CAL actor language,” December 2003.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A framework for simulating and prototyping heterogeneous systems,”
1994.

J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part i,” Communications of the ACM, vol. 3,
no. 4, pp. 184-195, 1960.

W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamlIt: A language
for streaming applications,” in International Conference on Compiler
Construction, Grenoble, France, Apr 2002.

J. Falk, C. Zebelein, J. Keinert, C. Haubelt, J. Teich, and S. S. Bhat-
tacharyya, “Analysis of systemc actor networks for efficient synthesis,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 10,
no. 2, p. 18, 2010.

R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: scalable threads for internet services,” in ACM SIGOPS
Operating Systems Review, vol. 37, no. 5. ACM, 2003, pp. 268-281.
M. N. Krohn, E. Kohler, and M. F. Kaashoek, “Events can make sense.”
in USENIX Annual Technical Conference, 2007, pp. 87-100.

A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
“Cooperative task management without manual stack management.” in
USENIX Annual Technical Conference, General Track, 2002, pp. 289—
302.

E. A. Lee, A denotational semantics for dataflow with firing. Electronics
Research Laboratory, College of Engineering, University of California,
1997.

C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666-677, 1978.

R. Milner, Communicating and mobile systems: the pi calculus.
bridge university press, 1999.

B. Kienhuis and E. F. Deprettere, “Modeling stream-based applications
using the sbf model of computation,” Journal of VLSI signal processing
systems for signal, image and video technology, vol. 34, no. 3, pp. 291-
300, 2003.

A. C. J. Kienhuis, Design space exploration of stream-based dataflow
architectures. TU Delft, Delft University of Technology, 1999.

B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: Deriving
process networks from matlab for embedded signal processing ar-
chitectures,” in Proceedings of the eighth international workshop on
Hardware/software codesign. ACM, 2000, pp. 13-17.

E. Bezati, S. C. Brunet, M. Mattavelli, and J. W. Janneck, “Synthesis
and optimization of high-level stream programs,” in Electronic System
Level Synthesis Conference (ESLsyn), 2013. leee, 2013, pp. 1-6.

Cam-

