
MAFin: Maximizing Accuracy in FinFET based Approximated
Real-Time Computing

Shounak Chakraborty∗∗
shounak.chakraborty@ntnu.no
Norwegian university of Science

and Technology, Trondheim, Norway

Sangeet Saha∗
sangeet.saha@essex.ac.uk

University of Essex
Colchester, UK

Magnus Själander
magnus.sjalander@ntnu.no

Norwegian university of Science
and Technology, Trondheim, Norway

Klaus D. McDonald-Maier
kdm@essex.ac.uk
University of Essex
Colchester, UK

ABSTRACT
We propose MAFin that exploits the unique temperature effect in-
version (TEI) property of a FinFET based multicore platform, where
processing speed increases with temperature, in the context of
approximate real-time computing. In approximate real-time com-
puting platforms, the execution of each task can be divided into two
parts: (i) the mandatory part, execution of which provides a result
of acceptable quality, followed by (ii) the optional part, that can
be executed partially or fully to refine the initially obtained result
in order to increase the result-accuracy (QoS) without violating
deadlines. With an objective to maximize the QoS for a FinFET
based multicore system, MAFin, our proposed real-time scheduler
first derives a task-to-core allocation, while respecting system-wide
constraints and prepares a schedule. During execution, MAFin fur-
ther increases the achieved QoS, while balancing the performance
and temperature on-the-fly by incorporating a prudential tempera-
ture cognizant frequency management mechanism and guarantees
imposed constraints. Specifically, MAFin exploits the TEI property
of FinFET based processors, where processor-speed is enhanced
at the increased temperature, to reduce the execution time of the
individual tasks. This reduced execution-time is then traded off
either to enhance QoS by executing more from the tasks’ optional
parts or to improve energy efficiency by turning off the core. While
surpassing prior art, MAFin achieves 70% QoS, which is further en-
hanced by 8.3% in online, with a maximum EDP gain of up to 12%,
based on benchmark based evaluation on a 4-core based system.

CCS CONCEPTS
• Computer systems organization→ System on a chip;Multi-
core architectures; Real-time systems; • Hardware→ Ther-
mal issues.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0601-1/24/06.
https://doi.org/10.1145/3649329.3655985

KEYWORDS
FinFET, Energy Efficiency, Thermal Management, SHE, TEI, Real-
Time Systems, Approximate Computing
ACM Reference Format:
ShounakChakraborty, Sangeet Saha,Magnus Själander, and KlausD.McDonald-
Maier. 2024. MAFin: Maximizing Accuracy in FinFET based Approximated
Real-Time Computing. In 61st ACM/IEEE Design Automation Conference
(DAC ’24), June 23–27, 2024, San Francisco, CA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3649329.3655985

1 INTRODUCTION
In real-time computing, the correctness depends both on the result-
accuracy and on the time at which the results are obtained. For such
time-critical scenarios, approximated results generated on-time are
preferred to accurate results produced after deadline [3]. For exam-
ple, in case of target tracking, an approximated estimation of the
target’s location produced before deadline is better than an accurate
location, obtained too late. In approximate real-time computing,
each individual task is logically decomposed into a mandatory and
an optional part [14]. The entire mandatory part must be finished
before deadline to generate the minimally acceptable quality of
service (QoS), followed by a partial or complete execution of the
optional part, subject to availability of resources. The QoS improves
with the number of execution cycles spent on the optional part.

In 2018, approximate computing was introduced for multicore
based real-time systems while considering the energy budget as a
system-wide constraint for the independent task set [8]. L. Mo et al.
proposed energy efficient scheduling of the dependent approximate
tasks with dynamic voltage and frequency scaling (DVFS) of the
cores [14]. In recent works [9, 16], thermal efficient task scheduling
was proposed for dependent approximate real-time tasks, where
the offered QoS in offline mode is enhanced by employing online
architectural techniques for MOSFET based systems. The recent
shift from MOSFET to FinFET in state-of-the-art technology nodes
enables a more precise control of the transistor channel, reducing
unwanted current leakage and lowering power consumption [13].
Moreover, FinFETs experience a noticeable increase in circuit speed
at a higher temperature, known as temperature effect inversion
(TEI) [11]. However, the FinFET channel is encapsulated within a
thermal insulator that obstructs heat dissipation and can lead to
circuit failure due to the self heating effects (SHEs) [2]. Here, we
argue for a novel approximate real-time scheduling strategy that

https://doi.org/10.1145/3649329.3655985
https://doi.org/10.1145/3649329.3655985

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Chakraborty, S. et al.

leverages these unique properties of FinFET based multicores and
prudently exploits the temperature effect inversion to improve QoS
of approximated real-time tasks while combating SHEs.

Offline

Schedule
Tasks to

Maximize QoS

(i) Version ID
(ii) Processor ID
(iii) Start & Finish Time
(iv) QoS

For Each Ti, select-

Store Schedule in Dispatch Table

TEI Exploitation

Combat SHEs

Enhance QoS
By Executing

Higher version (O
i
)

Improve Energy/
Thermal Efficiency

Reduced
Execution

Time

T
1

T
2

T
3

T
n

Tasks with Precedence, Power and Deadline Constraints

C
h

ip
 M

u
lt

i-
P

ro
c

e
ss

o
r

MAFin: Online

DVS at the
Processor Cores

Online

Figure 1:MAFin: Process Overview
In MAFin, we devise an integer linear programming (ILP) based

scheduling technique for a set of approximated real-time tasks on a
FinFET based chip-multiprocessor (CMP), where scheduling is con-
strained by the power consumption of the CMP, task-dependency,
and deadline. Each task is equipped with multiple versions defined
by a diverse set of QoS, based on the respective amount of the
optional part that is executed. With an objective to enhance the
QoS while considering the given constraints, our ILP based sched-
uling provides the following information for task-execution: which
versions of each task (Version ID) to be executed on which core
(Processor ID), along with the task’s start and finish times (Start &
Finish Time) and the overall obtained QoS. During execution, we
divide the entire execution span of each task into multiple slices,
where on completion of each slice, the core temperature is evalu-
ated, and the core frequency is subsequently updated with a certain
voltage level to maximize TEI exploitation, while respecting time
constraint and thermal safety to curtail SHEs. MAFin trades off
the reduced execution time caused by TEI exploitation to increase
the result-accuracy by executing a higher optional version of the
task (subject to availability), or by turning off the core to improve
energy and thermal efficiency of the CMP. The entire mechanism
is depicted in Figure 1.

The contributions of MAFin are as follows:
• We schedule a set of dependent approximated real-time tasks
on a FinFET based CMP with an objective to maximize the
result-accuracy (QoS), by employing an ILP based strategy
(detailed in Sec. 3.1).

• We apply a TEI and SHE cognizant dynamic thermal manage-
ment (DTM) strategy that prudently reduces execution time
of the individual task by judiciously exploiting TEI, while
combating SHE, and generates slack by accelerating the pro-
cessing speed through TEI exploitation (detailed in Sec. 3.2),
which we have empirically validated and reported in Sec. 5.

• We exploit slack in either or both of the following ways:
(1) to maximize QoS by executing higher version from the

optional part of the tasks (based on availability),

(2) to improve thermal and energy efficiency of the CMP by
power gating the cores.

We argue and empirically validate the significance of the task-
scheduling approach of MAFin in combination with online TEI
exploitation and SHE combating mechanisms (Sec. 5). We achieve
70% QoS with our ILP based scheduling technique for a set of de-
pendent tasks with 65% workload, for which a state-of-the-art [14]
achieves a QoS of 55%. Our evaluation on a 4 core based CMP shows,
MAFin: Online enhances achieved QoS by 8.3% with a maximum en-
ergy delay product (EDP) gain of 12%. MAFin is the first scheduling
mechanism that considers TEI exploitation in a FinFET based CMP
to enhance QoS of dependent approximated real-time tasks, while
maintaining both real-time constraints and thermal safety.

2 SYSTEM MODEL
OurCMP consists of𝑚 homogeneous cores, denoted as 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝑚}.
A real-time approximate computing (AC) based application (A)
with deadline 𝐷𝑃𝑇𝐺 is modelled, as a precedence constrained task-
graph (PTG) (as shown in Figure 2), 𝐺 = (𝑇, 𝐸), where 𝑇 is the set
of tasks (𝑇 = {𝑇𝑖 | 1 ≤ 𝑖 ≤ 𝑛}) and 𝐸 is the set of directed edges
(𝐸 = {⟨𝑇𝑖 ,𝑇𝑗 ⟩ | 1 ≤ 𝑖, 𝑗 ≤ 𝑛; 𝑖 ≠ 𝑗}). The worst-case execution
length (𝑙𝑒𝑛𝑖) for each task 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛) is logically decomposed
into 𝑀𝑖 cycles for its mandatory part, and 𝑂𝑖 , the cycles for its
optional part. We further assume that a task 𝑇𝑖 might have 𝑘𝑖 dif-
ferent versions, that is, 𝑇𝑖 = {𝑇 1

𝑖
,𝑇 2
𝑖
, . . . ,𝑇

𝑘𝑖
𝑖
}, which are distinct

by their individual execution lengths of their respective optional
parts (𝑂𝑖), denoted as 𝑂1

𝑖
, 𝑂2

𝑖
, ..., 𝑂𝑘𝑖

𝑖
, where 𝑂𝑝

𝑖
achieves a higher

result-accuracy than 𝑂
𝑞

𝑖
, if 𝑝 > 𝑞. The execution length (𝐸𝐿(𝑖, 𝑗))

of the 𝑗𝑡ℎ version of task 𝑇𝑖 (i.e. 𝑇
𝑗
𝑖
where 1 ≤ 𝑗 ≤ 𝑘𝑖) can now be

defined as: 𝐸𝐿(𝑖, 𝑗) = 𝑀𝑖 +𝑂 𝑗
𝑖
. The result-accuracy𝐴𝑐𝑐 𝑗

𝑖
of the𝑇 𝑗

𝑖
is

basically the executed optional part of the task,𝑂 𝑗
𝑖
(i.e., 𝐴𝑐𝑐 𝑗

𝑖
= 𝑂

𝑗
𝑖
).

Thus, the overall system level result-accuracy is defined as the sum
of the executed cycles of𝑂 𝑗

𝑖
for all of our tasks [8] and can be stated

as: 𝑄𝑜𝑆 (A) = ∑𝑛
𝑖=1𝑂

𝑗
𝑖
| 𝑇𝑖 = 𝑇

𝑗
𝑖
.

T
1

T
2

T
3

T
4

T
5

T
6

Critical Path

D
PTG

k
2
 X 1

T1

2
T2

2
Tk

2

Available Versions

Selected
Version

2

V
1
/F

1
V

2
/F

2
V

L
/F

L

Available V/F Levels

Selected
V/F Level

L X 1

Figure 2: Task graph

3 MAFIN : PROPOSED TECHNIQUE
MAFin prioritises accuracy. It first creates an offline schedule (Sec. 3.1)
and then uses an online technique (Sec. 3.2) to exploit TEI for even
better results.

3.1 MAFin: Offline
We present a scheduling strategy based on integer linear program-
ming (ILP). For this purpose, we first introduce an integer decision

MAFin: Maximizing Accuracy in FinFET based Approximated Real-Time Computing DAC ’24, June 23–27, 2024, San Francisco, CA, USA

variable 𝑆𝑖 ∈ Z+ to capture start time of each task 𝑇𝑖 , where Z+
denotes the set of positive integers. We further define a binary
decision variable, 𝑍𝑖𝑘𝜂 , where, 𝑖 = 1, 2, ..., 𝑛; 𝑘 = 1, 2, ..., 𝑘𝑖 ; and
𝜂 = 1, 2, ...,𝑚; Here indices, 𝑖 , 𝑘 and 𝜂 denote task ID, corresponding
version ID and the processor ID, respectively. 𝑍𝑖𝑘𝜂 = 1, if the 𝑘-th
version of 𝑇𝑖 (i.e. 𝑇𝑘

𝑖
) executes on processor 𝜂, otherwise 0. We

define another binary variable 𝑌𝑖 𝑗 , where 𝑌𝑖 𝑗 = 1, if task 𝑇𝑖 starts
before 𝑇𝑗 , else 0. Note that, all tasks are assumed to be executed
at a fixed core-frequency. To model our scheduling strategy, the
constraints on the decision variable are stated as follows:

(1) Each task 𝑇𝑖 is assigned to exactly one processor with a
particular version

𝑘𝑖∑︁
𝑘=1

𝑚∑︁
𝜂=1

𝑍𝑖𝑘𝜂 = 1 (1)

(2) The application A must meet its end-to-end absolute dead-
line 𝐷𝑃𝑇𝐺 . Hence, the sink node 𝑇𝑛 should be finished by
𝐷𝑃𝑇𝐺 , which is represented as-

𝑆𝑛 +
𝑘𝑛∑︁
𝑘=1

𝑚∑︁
𝜂=1

(𝐸𝐿 (𝑛,𝑘) × 𝑍𝑛𝑘𝜂) − 1 ≤ 𝐷𝑃𝑇𝐺 (2)

(3) The peak power consumption of the defined systemmust not
exceed the stipulated power budget. Let 𝑃𝑜𝑤𝑝𝑒𝑎𝑘 represents
the peak power consumption of the system-

𝑃𝑜𝑤𝑝𝑒𝑎𝑘 =𝑚𝑎𝑥 {𝑃𝑜𝑤𝑠𝑦𝑠 } (3)

where,
∀𝑡 |𝑃𝑜𝑤𝑝𝑒𝑎𝑘 ≤ 𝑃𝑜𝑤_𝐵𝐺𝑇 (4)

𝑃𝑜𝑤𝑠𝑦𝑠 is dynamic plus static power consumption of all the
busy processor-cores built in 14nm FinFET technology node,
and is the summation of power consumption of all the tasks
executing at the time instant 𝑡 . By considering computational
loads of𝑀𝑖 and𝑂𝑖 , we derived the power consumption of𝑀𝑖

and 𝑂𝑖 ’s of each task (as shown in our example in Table 1).
(4) Precedence constraints between the tasks must also be sat-

isfied. The execution of 𝑇𝑗 should commence only after the
completion of its predecessor 𝑇𝑖 .

∀(⟨𝑇𝑖 ,𝑇𝑗 ⟩) ∈ 𝐸, (𝑆𝑖 +
𝑘𝑖∑︁
𝑘=1

𝑚∑︁
𝜃=1

𝐸𝐿 (𝑖, 𝑘) × 𝑍𝑖𝑘𝜂) ≤ 𝑆 𝑗 (5)

(5) In order to avoid overlapping between tasks executing at
the same processors, the following inequalities need to be
satisfied: ∀(⟨𝑇𝑖 ,𝑇𝑗 ⟩) ∈ A, where 𝑖 ≠ 𝑗 ,

𝑌𝑖 𝑗 +𝑌𝑗𝑖 > 0 (6)

𝑌𝑖 𝑗 +𝑌𝑗𝑖 ≤ 1 (7)

(𝑆𝑖 +
𝑘𝑖∑︁
𝑘=1

𝑚∑︁
𝜂=1

𝐸𝐿 (𝑖, 𝑘) × 𝑍𝑖𝑘𝜂) ≤ (𝑆 𝑗 + (1 − 𝑌𝑖 𝑗) × 𝑀) (8)

Equation 8 avoids time-wise overlap of any pair of tasks on
the same processor, i.e.𝑇𝑗 should start after completion of𝑇𝑖 ,
if𝑇𝑖 is predecessor of𝑇𝑗 . If tasks are executed in reverse order,
we use big-M nullification for deactivating the constraint.

(6) Objective. Our objective of the formulation is to select the
feasible solution, that maximizes QoS of the application.
Hence, the objective can be represented as follows:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑄𝑜𝑆 (A) (9)

M
1

M
3

M
5

10 20 30 40 50 60 70 80 90 100

M
2

M
4

10 20 30 40 50 60 70 80 90 100

M
6

Single
Oi

Mi
Lower
Oi

P
1

P
2

DPTG = 100

O1
1

O3
3

O2
5

O3
2

O2
4

O1
6

Highest
Oi

Figure 3: Task allocation by constrained scheduling.

fi

Frequency

Time

(A) After Task Allocation

Frequency/
Temperature

Time

(B) Runtime Temperature

Temperature
Frequency

M1

Base
Frequency

(C) DVS based TEI exploitation
and SHEs management
Base Frequency

Average Runtime Frequency

Voltage
/Frequency

M
1

M
3

M
5P

1
O1

1
O3

3
O2

5

10 20 30 40 50 60 70

fi
M

1
M

3
M

5
M

1
O1

1
M

3
O3

3
M

5
O2

5P
1

Base
Frequency

Time

fi
M

1
O1

1
M

3
O3

3
M

5P
1

O2
5

Oi updated to higher version

Slack utilized for power gating (D) QoS Improvement
& Power Saving

Figure 4: TEI induced QoS improvement and Power Saving.
Here, in the context of ILP formulation, 𝑄𝑜𝑆 (A) will be:

𝑄𝑜𝑆 (A) =
𝑚∑︁
𝜂=1

𝑛∑︁
𝑖=1

𝑘𝑖∑︁
𝑘=1

𝑍𝑖𝑘𝜂 ×𝑂𝑘
𝑖 (10)

subject to the constraints presented in Equation 1 to 8.

Table 1: Parameters and their values, for example task-set

Task 𝑀𝑖 𝑃𝑜𝑤𝑀𝑖
𝑂𝑖 𝑃𝑜𝑤𝑂𝑖

Task 𝑀𝑖 𝑃𝑜𝑤𝑀𝑖
𝑂𝑖 𝑃𝑜𝑤𝑂𝑖

𝑇 1
1 10 20 6 15 𝑇 1

4 20 30 6 25
𝑇 1
2 20 30 5 20 𝑇 2

4 20 30 12 30
𝑇 2
2 20 30 7 20 𝑇 1

5 16 20 6 20
𝑇 3
2 20 30 10 25 𝑇 2

5 16 20 7 20
𝑇 1
3 20 20 4 20 𝑇 3

5 16 20 9 25
𝑇 2
3 20 20 8 20 𝑇 1

6 18 20 3 10
𝑇 3
3 20 20 10 25 𝑇 2

6 18 20 5 15

Let us consider an example with the task-set given in Table 1.
These tasks have to be scheduled on two processors (𝑚 = 2), with
a deadline 𝐷𝑃𝑇𝐺 = 100 time units. By choosing different versions
of the tasks, our algorithm generates the feasible schedule, which
is depicted in Figure 3. Here, 𝑇5 and 𝑇6 are executed with lower
versions to satisfy the deadline. Our total obtained QoS value is 48.

3.2 MAFin: Online
The entire MAFin: Online mechanism to exploit TEI, while combat-
ing SHEs is given in Algo 1. The dispatch table stores scheduled
tasks, including task ID, assigned core, execution order, and the
processor’s base frequency, which must be maintained throughout
task execution to meet deadlines and ensure thermal safety.

The tasks are fetched from the dispatch table by each proces-
sor (𝑃 𝑗) in parallel along with the base frequency (𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖])
and the current core temperature (𝑇𝑒𝑚𝑝) is also noticed (line 2
to 3). Considering 𝑇𝑒𝑚𝑝 , the supply voltage (𝑉𝑖𝑛) is determined
by employing a prior TEI frequency model proposed by Cai and

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Chakraborty, S. et al.

Marculescu [7], so that the core frequency should become at least
𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖] and the execution is subsequently initiated (line 4).
The entire execution span of each tasks is evenly sliced into some
time-quantum, representing a number of consecutive clock cy-
cles, denoted as Δ𝑠𝑙𝑖𝑐𝑒 . Once the current cycle count (𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟)
reaches a Δ𝑠𝑙𝑖𝑐𝑒 value, indicating end of a time-quantum, the fre-
quency (𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖]) and temperature (𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒) of the lastΔ𝑠𝑙𝑖𝑐𝑒
is noticed (line 7). If the 𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒 violates the higher temperature
threshold (𝑇𝑒𝑚𝑝𝐻𝑖

𝑡ℎ𝑟
), the 𝑉𝑖𝑛 will be set to the lowest possible volt-

age (𝑉𝑑𝑑 [1]) to combat the SHEs (line 8 to 9). While 𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒 is
lesser than the lower temperature limit, implying lower TEI ex-
ploitation, the 𝑉𝑖𝑛 is set to the highest possible value of 𝑉𝑑𝑑 [𝐿]
(line 10 to 11). In case 𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒 is within the range of allowable
temperature values, the 𝑉𝑖𝑛 is set to the maximum possible value
so that, average frequency should not be lower than 𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖]
to maximize TEI exploitation. The newly assigned frequency along
with the current voltage and 𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒 is next used to predict the
temperature at the end of the subsequent slice to ensure that, this
predicted temperature (𝑇𝑒𝑚𝑝𝑑𝑒𝑟𝑖𝑣𝑒𝑑 (𝑉 [𝑚], 𝐹𝑎𝑣𝑔,𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒)) will
not violate the critical temperature (𝑇𝑒𝑚𝑝𝐶𝑟𝑖𝑡)) of the core, so that
SHEs can be tackled. The entire mechanism is illustrated in line 12
to 18. Once the frequency will be assigned at the end of a slice, it
will also be added to a frequency array so that the overall average
frequency can be tracked to make sure that timing constraint is
respected (line 19 to 21). Note that, our 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 is incremented
during the slice (line 23).

Upon completion of 𝑀𝑖 of a task (line 24) with our dynamic
TEI exploitation mechanism, the spare cycles are calculated and
added to the scheduled cycles left for running 𝑂𝑖 (line 25). If the
highest 𝑂𝑖 is scheduled, it will be executed otherwise, if the cycles
left for running 𝑂𝑖 is sufficient to execute a higher version, 𝑂𝑖 is
updated andwill be executed next (line 27 to 30). As TEI exploitation
will finish the task earlier, a slack can be generated at the end of
each task (line 31). Upon completion of the execution of a task,
𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝑒𝑛𝑑_𝑇𝑖𝑚𝑒 (𝑇𝑖) is computed for 𝑇𝑖 , which is either the
starting time of the next task on 𝑃 𝑗 , or deadline if 𝑇𝑖 is the last task
on 𝑃 𝑗 . Next 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 is derived and if found higher than the
core’s 𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒 , the core will be turned off and it will be
turned on again, once the 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 interval is over (line 33 to
36). Figure 4 shows the gains of TEI exploitation, including reduced
execution time, improved energy efficiency, and enhanced QoS.

Implementation Overhead: Implementation of Algo 1 uti-
lizes thermal sensors for temperature tracking, commonly found in
commercial CMPs [12]. For voltage scaling and core power man-
agement, conventional on-chip VRs and per-core-power-gating
circuitry are integrated at each core, respectively, typical features
in modern CMPs [6]. Notably, the implementation of MAFin does
not necessitate any additional hardware.

4 SIMULATION FRAMEWORK FOR
MAFIN :ONLINE

We simulated a tiled homogeneous CMP with 4 x86 OoO cores
using the gem5 full system simulator[5]. Each replicated tile in-
cludes a processor core, data, and instruction local L1 caches. A
shared L2 cache is centrally located, and a 2D-mesh-NoC connects
the tiles and the L2 cache. Performance traces of multithreaded

Algorithm 1: MAFin: Exploiting TEI with DTM
Input: 𝐹_𝐵𝑎𝑠𝑒 [1 : |T |],𝑇𝑒𝑚𝑝_𝐼𝑛𝑖𝑡 , Δ, 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 ,𝑉𝑑𝑑 [1 : 𝐿],𝑇𝑒𝑚𝑝𝐻𝑖

𝑡ℎ𝑟
,

𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

, 𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒

Output: A schedule with enhanced accuracy and thermal/energy efficiency
1 𝑇𝑒𝑚𝑝 =𝑇𝑒𝑚𝑝_𝐼𝑛𝑖𝑡 ;
2 for each processor 𝑃 𝑗 (do in parallel) do
3 # Fetch the task T𝑖 from 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ_𝑡𝑎𝑏𝑙𝑒 along with its assigned base frequency

(𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖]) and current temperature (𝑇𝑒𝑚𝑝) ;
4 # Set𝑉𝑖𝑛 to fix the frequency, so that, 𝐹𝑟𝑒𝑞 (𝑉𝑖𝑛 ,𝑇𝑒𝑚𝑝) ≥ 𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖], and

start execution and 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 = 0 ;
5 while T𝑖 is executed do
6 if 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 == Δ𝑠𝑙𝑖𝑐𝑒 then

7 # Get the frequency (𝐹𝑀𝑖
𝑠𝑙𝑖𝑐𝑒−1) during Δ𝑠𝑙𝑖𝑐𝑒−1 and temperature

(𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒) at the end of Δ𝑠𝑙𝑖𝑐𝑒−1 ;
8 if 𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒 ≥ 𝑇𝑒𝑚𝑝𝐻𝑖

𝑡ℎ𝑟
then

9 𝑉𝑖𝑛 =𝑉𝑑𝑑 [1] ;

10 if 𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒 ≤ 𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

then
11 𝑉𝑖𝑛 =𝑉𝑑𝑑 [𝐿] ;

12 if 𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

>𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒 >𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

then
13 for𝑚 = 2 to (𝐿 − 1) do
14 𝐹

𝑀𝑖
𝑠𝑙𝑖𝑐𝑒

= 𝑔𝑒𝑡𝐹𝑟𝑒𝑞 (𝑉 [𝑚],𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒) ;
15 𝐹𝑎𝑣𝑔 = (𝐹𝑀𝑖

𝑠𝑙𝑖𝑐𝑒−1 + 𝐹
𝑀𝑖
𝑠𝑙𝑖𝑐𝑒

)/2 ;
16 if (𝐹𝑎𝑣𝑔 ≥ 𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖] and

𝑇𝑒𝑚𝑝𝑑𝑒𝑟𝑖𝑣𝑒𝑑 (𝑉 [𝑚], 𝐹𝑎𝑣𝑔,𝑇𝑒𝑚𝑝𝑠𝑙𝑖𝑐𝑒) ≤
𝑇𝑒𝑚𝑝𝐶𝑟𝑖𝑡) then

17 𝑉𝑖𝑛 =𝑉𝑑𝑑 [𝑚] ;
18 𝑏𝑟𝑒𝑎𝑘 ;

19 𝐹
𝑀𝑖
𝑠𝑙𝑖𝑐𝑒

= 𝑔𝑒𝑡𝐹𝑟𝑒𝑞 (𝑉𝑖𝑛 ,𝑇𝑒𝑚𝑝) ;
20 Add 𝐹𝑀𝑖

𝑠𝑙𝑖𝑐𝑒
to 𝐹𝑟𝑒𝑞𝐴𝑟𝑟𝑎𝑦𝑀𝑖 {} ;

21 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 = 0 ;
22 else
23 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 + + ;

24 if 𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 ==𝑇𝑜𝑡𝐶𝑦𝑐𝑙𝑒 (𝑀𝑖) then
25 𝑆𝑝𝑎𝑟𝑒𝐶𝑦𝑐𝑙𝑒𝑂𝑖 =

𝐹𝑀𝑖 _𝐵𝑎𝑠𝑒 [𝑖]−𝑀𝑒𝑎𝑛 (𝐹𝑟𝑒𝑞𝐴𝑟𝑟𝑎𝑦𝑀𝑖 {})
𝑇𝑜𝑡𝐶𝑦𝑐𝑙𝑒 (𝑀𝑖)

;

26 𝐶𝑦𝑐𝑙𝑒𝐿𝑒 𝑓 𝑡𝑂𝑖 = 𝑆𝑝𝑎𝑟𝑒𝐶𝑦𝑐𝑙𝑒𝑂𝑖 + 𝑆𝑐ℎ𝑒𝑑𝑇𝑜𝑡𝐶𝑦𝑐𝑙𝑒𝑂𝑖 ;
27 if Highest version of𝑂𝑖 is scheduled then
28 Fetch the scheduled𝑂𝑖 and execute ;
29 else
30 Find the highest possible𝑂𝑖 having𝑇𝑜𝑡𝐶𝑦𝑐𝑙𝑒𝑂𝑖 ≤

𝐶𝑦𝑐𝑙𝑒𝐿𝑒 𝑓 𝑡𝑂𝑖 , and start execution ;

31 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 = 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝑒𝑛𝑑_𝑇𝑖𝑚𝑒 (𝑇𝑖) − 𝐶𝑢𝑟𝑟𝑇𝑖𝑚𝑒 ;
32 if (𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡𝑟 ==𝑇𝑜𝑡𝐶𝑦𝑐𝑙𝑒 (𝑂𝑖)) && (𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 ≥

𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒) then
33 # Turn off the core ;
34 while 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 > 𝐵𝑟𝑒𝑎𝑘_𝐸𝑣𝑒𝑛_𝑇𝑖𝑚𝑒 do
35 𝑆𝑙𝑎𝑐𝑘_𝑎𝑓 𝑡𝑒𝑟_𝑇𝑖 -- ;

36 #Turn on the core ;

PARSEC benchmarks [4] from gem5 were analyzed using McPAT-
monolithic [10] for power simulation. Power traces were then sent
to HotSpot 6.0 [19] to generate temperature traces, utilizing ther-
mal properties of the 14nm FinFET technology [7]. A 1ms interval
(Δ𝑠𝑙𝑖𝑐𝑒) was used for collecting periodic performance traces from
gem5. Although the TEI effect in FinFET results in frequency no
longer fixed at various temperatures, for our simulation, we as-
sume a fixed temperature during the entire Δ𝑠𝑙𝑖𝑐𝑒 [7]. The default
parameters are listed in Table 2.

Table 2: System Parameters
Parameters Values

Number of Cores 4 (each 2 cores represent a single 𝑃𝑖 (in Figure 3))
Core Model (Technology) 𝑥86 (14nm FinFET)
Nominal Frequency 3.5GHz
𝑉𝑑𝑑 [1],𝑉𝑑𝑑 [𝐿] (at cores) 0.65v, 0.75v
Private L1 D/I Cache 64KiB, 4W SA, LRU
Shared L2 Cache 8MiB, 16W SA, LRU
DRAM 8GiB
Ambient Temperature 40 ◦C

MAFin: Maximizing Accuracy in FinFET based Approximated Real-Time Computing DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Table 3: Tasks formation with PARSEC. (Acronyms:
Blackscholes (Black), Bodytrack (Body), Canneal (Can),
Dedup (Ded), Fluidanimate (Fluid), Freqmine (Freq),

Streamcluster (Stream), and X264 (X264)). The execution
lengths (𝐸𝐿s) are in million cycles. Black (2) implies 2 copies

of Black, which is the same for others.

Tasks Benchmarks (𝑀𝑖 ,𝑂𝑖) EL ([𝑀𝑖], [𝑂𝑖]) Sel.𝑂𝑖 [EL]

𝑇1 Black (2), Body (2) [100], [60] #1 [60]
𝑇2 Stream (2), Can (2) [200], [50, 70, 100] #3 [100]
𝑇3 Ded (2), Fluid (2) [200], [40, 80, 100] #3 [100]
𝑇4 Fluid (2), Freq (2) [200], [60, 120] #2 [120]
𝑇5 Body (2), X264 (2) [160], [60, 70, 90] #2 [70]
𝑇6 X264 (2), Ded (2) [180], [30, 50] #1 [30]

We set the threshold values used in Algo 1 as follows: 𝑇𝑒𝑚𝑝𝐻𝑖
𝑡ℎ𝑟

= 80 ◦C, 𝑇𝑒𝑚𝑝𝐿𝑜𝑤
𝑡ℎ𝑟

= 77 ◦C, 𝑉𝑑𝑑 [𝐿] = 0.75𝑣 and 𝑉𝑑𝑑 [1] = 0.65𝑣 [7].
We assumed a maximum safe temperature of 82 ◦C, hence, we set
𝑇𝑒𝑚𝑝𝐻𝑖

𝑡ℎ𝑟
= 80 ◦C to restrict the thermal overshoot beyond 82 ◦C.

By considering different technology nodes and process variations,
both temperature values for determining hotspots and the thresh-
old temperatures can be tuned, which we intend to explore in our
future work. To maintain an average frequency of 3.7GHz, we set
𝑉𝑖𝑛 so that we can maintain the lowest and the highest frequen-
cies at 3.0GHz (for 𝑇𝑒𝑚𝑝𝐿𝑜𝑤

𝑡ℎ𝑟
, 𝑉𝐿𝑜) and 3.9GHz (for 𝑇𝑒𝑚𝑝𝐻𝑖

𝑡ℎ𝑟
, 𝑉𝐻𝑖),

respectively. Note that all of our thresholds can be adjusted by
considering different technical specifications of the underlying cir-
cuitry and/or technology nodes. However, our employed on-chip
VR is assumed to be installed per core, and each VR has a switching
speed of 20mV/ns [9], and the respective area and power overheads
are based on a prior model [18].

We have evaluated the following core-based techniques:
• Baseline – the default model with system parameters ac-
cording to Table 2;

• MAFin – the proposed techniques;
• ENPASS – prior DVFS technique for FinFET-CMPs [15].

By considering prior arts, where PARSEC [4] can be used in
an approximated computing paradigm [1, 17], we constructed our
task-set by defining each of the 6 tasks1 with multiple copies of
PARSEC applications with large input sets (detailed in Table 3).

5 RESULTS AND ANALYSIS
We will now discuss the efficacy ofMAFin: Offline (Sec. 3.1) and the
benchmark based evaluation of MAFin: Online (Sec. 3.2).

5.1 MAFin: Offline
WedefineNormalizedAchievedQoS (NAQ) as the ratio between the
actually achieved QoS for the DAG, and the maximum achievable
QoS by running the highest versions of all tasks. NAQ can be formu-

lated as: 𝑁𝐴𝑄 =

∑𝑛
𝑖=1𝐴𝑐𝑐

𝑗

𝑖∑𝑛
𝑖=1𝐴𝑐𝑐

𝑘𝑖
𝑖

, where 𝑘𝑖 is the highest version of task

𝑇𝑖 . We compared our strategy with prior arts, 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦 [14]
and Prepare [9], and the results are shown in Figure 5. Towards a
fair comparison with 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦, the overall power constraint
is based on the considered higher temperature limit (82 ◦C) of the

1For real-time systems, the executed applications must be known to assure meeting
deadlines.

experimental framework of MAFin, which we have also used to
evaluate Prepare. Next, we considered our comparison by uniformly
choosing𝑀𝑖 of the tasks between 20% to 80% of 𝑙𝑒𝑛𝑖 . As execution
demand of individual tasks goes up (due to increase in 𝑆𝑦𝑠𝑊𝐿),
MAFin maintains improved QoS by achieving higher NAQ than
𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦. MAFin is able to maintain 70% QoS at 65% workload
where 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦 achieves 55% QoS, as the considered over-
all power budget in 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦 would scale up with the higher
𝑆𝑦𝑠𝑊𝐿 . Moreover, 𝑇𝑎𝑠𝑘_𝐷𝑒𝑝𝑙𝑜𝑦 also allows unlimited tasks migra-
tion, that incurs additional overhead. However, for all workloads,
NAQs obtained by Prepare are surpassed byMAFin, which attributes
to the fact that Prepare employs DVFS policy to maintain the power
budget and thus, often chooses the lower version of 𝑂𝑖 .

5.2 MAFin: Online
First, we evaluated the impact of TEI on our considered benchmarks
(Table 3), while employing Algo 1. For compute intensive applica-
tions, (e.g. Black, X264, etc.), the peak temperature of the processor
cores is comparatively higher, so is the TEI exploitation, rather
than the memory intensive ones (e.g. Freq, Stream, etc.). Overall, by
exploiting TEI, Algo 1 is able to improve frequency by 6.6% on an
average while the range is in 6.1% to 7.1%. This enhanced frequency
although improves the performance, but higher frequency poten-
tially incurs power as well as thermal overheads which is also taken
care by our SHE combating mechanism of Algo 1. We also com-
pared our SHE cognizant TEI exploitation with ENPASS [15], a TEI
agnostic DVFS based thermal management technique for FinFET
based CMPs. The aggressive DVFS approach of ENPASS offers bet-
ter thermal efficiency thanMAFin by lowering core frequency up to
10% (with an average reduction of 8%), but MAFin’s TEI cognizant
thermal management ensures thermal safety while improving per-
formance through TEI exploitation. Figure 6 shows how MAFin
surpasses ENPASS and Baseline systems in terms of operational
frequency. Lower frequency maintains lower peak temperature for
ENPASS (a temperature range of 76.3 ◦C to 78.5 ◦C) than Baseline
and MAFin, which is depicted in Figure 7. MAFin maintains peak
temperature within a range of 79.6 ◦C to 80.3 ◦C, which confirms
no temperature overshoot beyond 82.0 ◦C. Note that, both ENPASS
and MAFin shows better thermal efficiency over Baseline, ranging
the peak temperature between 81.6 ◦C and 83.0 ◦C).

Improving frequency by employing Algo 1 trims the execution
lengths of both 𝑀𝑖 and 𝑂𝑖 of individual tasks (as depicted in Fig-
ure 4), which generates scope either to execute higher version of
𝑂𝑖 or to power gate the cores or both. To showcase the efficacy of
MAFin, we scale the execution of our example shown in Figure 3),
and the respective execution lengths are given in Table 3. In this
example, apart from 𝑇5 and 𝑇6, all other tasks are executed with
their highest versions. By applying Algo 1 to this task-set while
considering our schedule of Figure 3, we observed that, slacks have
been generated after end of each tasks, and Algo 1 is also able to exe-
cute highest versions of both𝑇5 and𝑇6. Due to execution of highest
versions for both𝑇5 and𝑇6, the slack spans have been reduced, how-
ever, these spans are sufficient (i.e. higher than break-even-time of
the cores) to power gate the respective cores. The updated schedule
is illustrated in Figure 8, and the overall QoS improvement of 8.3%
is shown in Table 4. By power gating the respective cores at the

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Chakraborty, S. et al.

Figure 5: 𝑆𝑦𝑠𝑊𝐿 vs. NAQ. Figure 6: Impact of TEI on Frequency. Figure 7: Peak Temperature.

M
1

M
3

M
5

M
2

M
4

100 200 300 400 500 600 700 800 900 1000

M
6

Single
Oi

Mi

P
1

P
2

DPTG = 1000

O1
1

O3
3

O3
5

O3
2

O2
4

O2
6

Highest
Oi

Slack Updated
Oi in Online

0

100 200 300 400 500 600 700 800 900 1000

Figure 8: Updated Schedule by employing Algo 1. Timeline
is based on Table 3. Cores are power-gated during slacks.

Figure 9: EDP Gains.

end of each task, we achieved an average EDP gain of 8.1%, with a
maximum gain of 12%, which are plotted in Figure 9.

Table 4: Outputs ofMAFin: Offline andMAFin: Online

Tasks Mapped Scheduled Updated Amount of
Core Version (Offline) Version (Online) Slack

𝑇1 𝑃1 1 1 6.9%
𝑇2 𝑃2 3 3 7.0%
𝑇3 𝑃1 3 3 6.1%
𝑇4 𝑃2 3 3 6.2%
𝑇5 𝑃1 2 3 2.5%
𝑇6 𝑃2 1 2 1.7%

Improvement in Achieved QoS 8.3%

Discussion: Both offline and online techniques ofMAFin outper-
form prior arts [9, 14, 15] in terms of performance. SHE cognizant
TEI exploitation of MAFin incurs no noticeable implementation
cost, unlike these prior arts. In Prepare [9], that considers a MOS-
FET based CMP, the performance improvements are achieved by
implementing some hardware mechanisms to detect memory stalls,
whereas, ENPASS [15] considers a FinFET based CMP, but its aggres-
sive DVFS is TEI agnostic, misses the chance of TEI induced perfor-
mance improvements. From offline perspective, Task_Deploy [14]
proposes a power aware task migration, potentially aggravating the
performance. However,MAFin’s TEI aware combined offline-online
scheduling mechanism exploits higher temperature as a service
while guaranteeing thermal safety, which enables one to finish the
tasks early with improved accuracy as well as energy efficiency.

6 CONCLUSIONS
In MAFin, we introduce a novel hybrid offline-online scheduling
strategy for approximate real-time tasks in a FinFET based CMP
platform.MAFin generates a schedule for a dependent task-set with

an objective to maximize the QoS, while respecting other system-
wide constraints. At runtime, while ensuring thermal safety,MAFin
exploits the TEI property of FinFET based processor cores, where
operating frequency increases at higher temperature, thus reducing
the execution time of the individual tasks. This reduced execution-
time will further be employed either to enhance QoS by executing
more of the tasks’ optional parts or to improve energy efficiency by
turning off the core. Simulation results show that,MAFin surpasses
the prior art for a variety of simulation scenarios.

ACKNOWLEDGMENTS
This work is supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) through grants 𝐸𝑃/𝑋015955/1, 𝐸𝑃/𝑉 000462/1. For the purpose of open
access, the author has applied a Creative Commons Attribution (CC BY) license to any
Author Accepted Manuscript version arising.

REFERENCES
[1] S. Achour and M. C. Rinard. 2015. Approximate Computation with Outlier

Detection in Topaz. SIGPLAN Not. (2015).
[2] W. Ahn et al. 2018. Integrated modeling of Self-heating of confined geometry

(FinFET, NWFET, and NSHFET) transistors and its implications for the reliability
of sub-20nm modern integrated circuits. Microelectronics Reliability (Elsevier)
(2018).

[3] H. Aydin et al. 2001. Optimal reward-based scheduling for periodic real-time
tasks. IEEE TC (2001).

[4] C. Bienia et al. 2008. The PARSEC benchmark suite: Characterization and archi-
tectural implications. In PACT.

[5] N. Binkert et al. 2011. The Gem5 Simulator. SIGARCH CAN (2011).
[6] E. A. Burton et al. 2014. FIVR — Fully integrated voltage regulators on 4th

generation Intel® Core™ SoCs. In APEC.
[7] E. Cai and D. Marculescu. 2017. Temperature Effect Inversion-Aware Power-

Performance Optimization for FinFET-Based Multicore Systems. IEEE TCAD
(2017).

[8] K. Cao et al. 2019. QoS-Adaptive Approximate Real-Time Computation for
Mobility-Aware IoT Lifetime Optimization. IEEE TCAD (2019).

[9] S. Chakraborty et al. 2021. Prepare: Power-Aware Approximate Real-Time Task
Scheduling for Energy-Adaptive QoS Maximization. ACM TECS (2021).

[10] A. Guler and N. K. Jha. 2020. McPAT-Monolithic: An Area/Power/Timing Ar-
chitecture Modeling Framework for 3-D Hybrid Monolithic Multicore Systems.
IEEE TVLSI (2020).

[11] W. Lee et al. 2014. Dynamic thermal management for FinFET-based circuits
exploiting the temperature effect inversion phenomenon. In ISLPED.

[12] K. A. A. Makinwa. 2018. Temperature Sensor Performance Survey. http://ei.ewi.
tudelft.nl/docs/TSensor_survey.xls

[13] S. Mei et al. 2016. New understanding of dielectric breakdown in advanced
FinFET devices — physical, electrical, statistical and multiphysics study. In IEDM.

[14] L. Mo et al. 2019. Approximation-aware Task Deployment on Asymmetric
Multicore Processors. In DATE.

[15] K. Neshatpour et al. 2018. Enhancing Power, Performance, and Energy Efficiency
in Chip Multiprocessors Exploiting Inverse Thermal Dependence. IEEE TVLSI
(2018).

[16] S. Saha et al. 2022. ACCURATE: Accuracy Maximization for Real-Time Multi-core
systems with Energy Efficient Way-sharing Caches. IEEE TCAD (2022).

[17] S. Sidiroglou-Douskos et al. 2011. Managing Performance vs. Accuracy Trade-Offs
with Loop Perforation. In ACM SIGSOFT.

[18] W Kim et al. 2008. System level analysis of fast, per-core DVFS using on-chip
switching regulators. In HPCA.

[19] R. Zhang et al. 2015. HotSpot 6.0: Validation, Acceleration and Extension.. In
University of Virginia, Tech. Report CS-2015-04.

Received 20 February 2024; revised 12 March 2024; accepted 5 June 2024

http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls
http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

	Abstract
	1 Introduction
	2 System Model
	3 MAFin: Proposed Technique
	3.1 MAFin: Offline
	3.2 MAFin: Online

	4 Simulation Framework for MAFin:Online
	5 Results and Analysis
	5.1 MAFin: Offline
	5.2 MAFin: Online

	6 Conclusions
	References

