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Abstract—With the proliferation of mobile phones and other
mobile internet appliances, the application area of baseband
processing continues to grow in importance. Much academic
research addresses the underlying mathematics, but little has
been published on the design of systems to execute baseband
workloads. Most systems research is conducted within companies
who go to great lengths to protect their intellectual property. We
present an open-source LTE Uplink Receiver PHY benchmark
with a realistic representation of the baseband processing of an
LTE base station, and we demonstrate its usefulness in investi-
gating resource management strategies to conserve power on a
TILEPro64. By estimating the workload of each subframe and
using these estimates to control power-gating, we reduce power
consumption by more than 24% (11% on average) compared
to executing the benchmark with no estimation-guided resource
management. By making available a benchmark containing no
proprietary algorithms, we enable a broader community to
conduct research both in baseband processing and on the systems
that are used to execute such workloads.

I. INTRODUCTION

The cellular and mobile broadband market has increased
tremendously over the last decade and the number of base
stations is predicted to increase with 14% in 2011 [1]. The
number of mobile broadband subscribers has exploded in re-
cent years with a 93% year-on-year growth in March 2009 [2].
The worldwide mobile data bandwidth usage increased by
about 30% in the second quarter of 2009 alone [3]. The
Climate Group projects that by 2020 wireless networks will be
responsible for 13% of the global CO5 footprint of the infor-
mation and communication technology (ICT) sector; likewise,
they project that datacenters will be responsible for 18% of the
ICT emissions [4]. These data underscore the need to develop
power-efficient base stations whose processing capacity scales
to meet ever-growing demands.

The research community has heretofore lacked a shared,
freely available benchmark model of baseband processing.
This prevents comparison of system designs and strategies.
Given the potential market share that can be controlled by the
base-station providers, companies have been strictly guarding
their intellectual property. Nonetheless, in light of the rapid
expansion of the number, needs, and distribution of consumers
of mobile connectivity, an argument can be made for working
together as a research community to meet future baseband
processing requirements.
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To that end, we have developed an open-source bench-
mark [5] that provides a realistic model of LTE (Long Term
Evolution) [6] uplink receiver workloads. LTE is the next
generation in radio access technology, following 3G/WCDMA
and HSPA. It is optimized to deliver data rates of up to
100 Mbit/s and is currently being globally deployed. LTE
delivers these high bit rates through complex baseband pro-
cessing that increases the computational demand and thus the
power requirements of a base station.

Our LTE benchmark is organized as a software pipeline
in which modules can easily be replaced to model different
algorithms. Although our benchmark’s performance does not
rival state-of-the-art proprietary software and platforms, it
provides a reasonable baseline for comparing hardware designs
or resource management strategies — precisely because it
contains no proprietary algorithms. In short, it realistically
captures the dynamic behavior of an LTE baseband uplink
as viewed by the base station.

The demand for wireless communication varies over time
with periods of peak loads (rush hours) and periods of low
loads (late nights). Adapting the available computational re-
sources to variations in load can save power. This can reduce
the operational cost, which is a large portion of the base station
total cost-of-ownership.

We use our LTE Uplink Receiver PHY benchmark to
develop a subframe-based workload estimator, the results of
which we use to adapt the number of active cores on a Tilera
TILEPro64 processor. Our measurements show that dynamic
power can be reduced by 4% compared to no estimation-based
deactivation of cores. Further, we show that the potential to
power gate cores can reduce power by more than 24% (11%
on average). These results are encouraging in that they are
“unoptimized” — we do not yet take full advantage of low-
load scenarios where most of the computational resources of
a base stations could potentially be turned off.

II. LTE OVERVIEW

We first present a short overview of the resource allocation
and signal processing in an LTE baseband uplink receiver. For
more detailed information on the LTE baseband standard, refer
to the 3GPP specification series 36 [6], [7], [8].



A. Resource Allocation

To explain the operation of an uplink of an LTE base
station, we first address how the frequency spectrum and time
are allocated to the LTE transmitters/users (called UEs) that
communicate via that base station.

Each base station is allocated a certain frequency band
(1.25 MHz to 20 MHz). This frequency band is divided into
15 kHz sub-carriers. Time is divided into frames lasting 10
milliseconds, where each frame is further subdivided into 10
subframes lasting one millisecond. A subframe is divided into
two slots, each with seven SC-FDMA symbols. The symbols
are arranged such that three data symbols are transmitted,
followed by one reference symbol used for channel estima-
tion, followed by three more data symbols [7]. The smallest
schedulable unit is a physical resource block (PRB), which is
a grouping of twelve sub-carriers that lasts for the duration of

C. LTE Uplink Receiver Baseband Processing

The front-end of the LTE base station receiver includes
several components: the radio receiver, receive filter, cyclic
prefix removal, and fast Fourier transform (FFT), as shown in
Fig. 2. Once the FFT is computed, the PRBs of one subframe
for one user can be processed as a chain of signal processing
kernels that can be modeled as shown in Fig. 3.
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pending on the signal quality between the transmitter and
receiver. When noise and interference are low, a higher-order
modulation scheme can be employed (e.g., 16-QAM or 64-
QAM [9]) to achieve higher data rates compared to when noise
and interference are high.

Another technique for increasing the data rate is multiple-
input and multiple-output (MIMO) [10]. This technique em-
ploys multiple input and output radio channels to improve the
spectral efficiency and link reliability through higher tolerance
for fading. Spatial multiplexing, a transmission technique
that can be used in conjunction with MIMO [11], allows
transmission of several independently encoded data signals
via multiple transmit antennas. The independently encoded
data signals are called streams or layers. The latest standards
for LTE Advance include support for up to four transmission
layers in the uplink [12].

Channel estimation is typically performed for a slot before
the data are demodulated and decoded for the user. This
requires that the first three symbols be buffered until the
reference symbol is received and processed. Channel estima-
tion first applies a matched filter that multiplies the received
reference symbol (which has been distorted by the channel)
with the defined reference symbol. An inverse FFT (IFFT)
follows the matched filter, transforming the data back to the
time domain, where a window is used to extract part of the
time domain samples. An FFT then transforms these samples
back to the frequency domain. For a MIMO system, channel
estimation must be performed for each receive antenna and
layer, the results of which are used to calculate combiner
weights to be used in demodulation.



The combiner weights are used to merge the data from
multiple antennas and adjust for channel conditions. An IFFT
then transforms the data back to the time domain. In that
domain, the data are deinterleaved and soft symbol demapping
is performed. A turbo decoder consumes the soft demapped
symbols, and the results undergo a cyclic redundancy check.

III. PARALLELISM IN THE LTE UPLINK RECEIVER

Meeting the processing requirements of one new subframe
per millisecond requires parallelization. Fortunately, baseband
processing can be parallelized at multiple stages. The most
obvious approach processes each user separately (see Fig. 4).
A base station can typically handle ten users in a single
subframe. However, the amount of processing required by
different users can vary significantly (e.g., one user might use
voice over IP at kbits/sec, while another might upload files at
Mbits/sec). If parallelization is only performed across users,
the workload for different cores becomes uneven.
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User processing can also be parallelized: i) For channel
estimation, the matched filter, IFFT, windowing, and FFT
kernels are processed separately on data from each of the
receiver antennas and layers. For a four-antenna receiver and
the maximum four layers [12], the reference symbols can be
processed by up to 16 (four antennas x four layers) tasks.
The combiner-weight computation considers all the receiver
channels and layers, and is therefore not easily parallelized.
ii) For data demodulation and decoding, antenna combining
and FFT can be performed on each separate symbol and
layer. With six symbols in each slot and a maximum of four
layers, the data can be processed by up to 24 individual tasks
(six symbols x four layers). The remaining processing is
performed across all data, and is thus not easily parallelized.
Fig. 5 shows a schematic illustration of the parallelization of
channel estimation and data demodulation and decoding.

Further algorithmic-level parallelization could, for instance,
spread the computation of an FFT across multiple processing
units. This type of parallelization is orthogonal to what we
consider here, and employing it in addition to our schemes
would enable further scaling for higher performance.
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data demodulation and decoding.

IV. LTE BENCHMARK IMPLEMENTATION

We created the LTE Uplink Receiver PHY benchmark to
capture the dynamic behavior of an LTE baseband uplink of a
base station. We exclude the computations of the frontend (see
Fig. 2) from our benchmark, since the frontend is statically
defined and performed on all data received.

The dynamic behavior comes from the allocation of physical
resource blocks (PRBs) to users, the number of users allowed
to transmit data, and the quality of each user’s radio chan-
nel. The channel quality determines the modulations and the
number of allocated layers. The base station allocates PRBs
to users for each subframe. The duration of a subframe is one
millisecond and is therefore the rate at which the workload
changes. The following input parameters define the workload
for a subframe:

o number of users;

o number of PRBs allocated to each user;
« number of layers used for each user; and
« modulation technique used for each user.

A. Parallelization Framework

We have created two versions of our LTE benchmark:
a serial version that processes a subframe sequentially and
a parallel version based on POSIX threads (Pthreads) [13].
We implemented the serial version as a reference to verify
parallelized versions of the benchmark.

We implemented the LTE benchmark using Pthreads, a well
defined standard [13] supported by many operating systems
and architectures. The Pthreads version of the LTE benchmark
implements task creation, scheduling, and resource manage-
ment, allowing for complete control of the benchmark’s be-
havior and interactions with the underlying architecture. This
is the default version of the LTE benchmark, and it is the
version on which this article focuses.



B. Subframe Generation and Dispatch

The LTE benchmark consists of one maintenance thread and
a configurable number of worker threads. The maintenance
thread produces the inputs for each subframe and dispatches
a subframe every millisecond. In practice, the rate at which
subframes are dispatched is configurable; this allows the
benchmark to run on hardware that cannot sustain a rate
of one subframe per millisecond. During initialization, the
maintenance thread creates a defined number of worker threads
and initializes all required data structures. After initialization,
the maintenance thread enters a loop in which input data and
parameters for a subframe are created and dispatched every
DELTA milliseconds (where DELTA is configurable).

1) Subframe Input Data: At benchmark initialization, input
data sets are created for multiple subframes and then reused
across all dispatched subframes. This avoids the overhead
of creating new data for each subframe while assuring that
all subframes being processed in parallel have unique data.
The number of unique input data subframes to generate is
configurable (with ten as the default).

2) Subframe Input Parameters: The input parameters for
a subframe depend on the usage scenario modeled, which, in
turn, depend on two functions that create the input parameters.
The first function, init_parameter_model(parameter_model
*pmodel), initializes the necessary variables for a model, and
the second function, user_parameters *uplink_parameters(
parameter_model *pmodel), returns the number of users along
with their parameters and input data for one subframe.

3) Subframe Dispatch: Given the input data and parameters
generated for a subframe, the maintenance thread waits for
a signal alarm to be triggered every DELTA milliseconds.
Immediately after a signal alarm is triggered, the subframe’s
users are written to a global queue for processing, after which
the maintenance thread starts creating the input parameters for
the next subframes and waits for the next signal.

C. Subframe Processing

Subframes are processed by a parameterized number of
worker threads. Task scheduling employs work stealing: each
worker thread has a local task queue, and if no work exists
in its own queue, it tries to steal work from another worker
thread. Work stealing has been shown to achieve good load
balance across multiple cores, to scale well with the number of
cores, and to achieve efficient performance where the number
of cores can change dynamically [14], [15]. Before a worker
thread tries to steal work from another thread, it first checks
the global user queue to ensure that a new subframe has not
been dispatched. If a user exists in the queue, an idle worker
thread will dequeue one user and start processing its PRBs
(this thread is now considered a user thread).

1) Channel Estimation: Subframe processing starts with
the user thread creating a number of tasks equal to the number
of receive antennas multiplied by the number of layers used
for the current subframe. The tasks are placed on the local
task queue, and the user thread then processes them until the
queue is empty. Other idle worker threads, can steal tasks

to help perform the channel estimation. Once the local task
queue is empty, the user thread waits until the results from
all tasks become available. This is necessary because other
worker threads might still be processing some of the channel-
estimation tasks. When all data are processed, the user thread
performs the combiner-weight calculations used for antenna
combining and data processing.

2) Data Demodulation and Decoding: In the next pro-
cessing stage, antenna combining and inverse FFT can be
performed independently for each data symbol and layer. To
do this, the user thread creates a number of tasks equivalent
to the number of symbols multiplied by the number of layers.
These tasks are placed on the local queue, and the user thread
processes them until the queue is empty. Idle threads can
steal work to help with data processing. Data from both slots
are required for processing to proceed. When all processing
is completed for the two slots, the user thread performs the
remainder of the subframe processing, i.e., interleaving, soft
demapping, turbo decoding, and cyclic redundancy checking
(CRC). The computational intensive turbo decoding is com-
monly executed on dedicated hardware, and thus we omit
it from our benchmark. The call to perform turbo decoding
simply passes the data through.

D. Verifying the LTE Benchmark

We validate the parallelized uplink benchmark, by compar-
ing the results to those of the serial implementation. The serial
version processes a predetermined sequence of subframes,
recording and storing the results from each subframe. By
processing the same sequence of subframes in the parallel
versions of the benchmark, results from each subframe can be
compared against the serial version’s data. This can be used
to verify that the computation is consistent across different
architectures, as well.

V. EVALUATION SETUP

We first describe the input parameter model and then the
hardware platform used to generate our results.

A. Subframe Input Parameter Model

A base station might service hundreds of users, each with
their own requirements and channel conditions, while only be-
ing able to schedule approximately ten users per subframe. The
selection of ten users out of a larger set makes the parameters
of a subframe look rather random. It is therefore realistic to
approximate the subframe parameters with randomized values.
For lower load scenarios we also use randomized values for
simplicity of the parameter model.

For this evaluation we created an input parameter model
that varies the workload over time. A random number of users
is created, with each user having a random number of PRBs.
Fig. 6 presents pseudocode for the algorithm and Fig. 7 shows
the distribution of users for 68,000 subframes created with
the algorithm. To make the graph clearer, we only plot every
25th subframe. The figure shows that the number of users
varies constantly and rapidly. For each of these subframes



Fig. 8 shows the number of PRBs that are allocated. The figure
shows for each subframe the total number of PRBs allocated
to a subframe and the maximum and minimum number of
PRBs allocated to a single user. The maximum number of
PRBs allocated to a user varies between 20 and 190, while
the minimum number of PRBs varies between two (a user has
to have at least two PRBs to be scheduled for a subframe)
and 100. Fig. 7 and Fig. 8 show that the distributions in both
number of users and number of PRBs are large.

const MAX_PRB = 200
const MAX_USERS = 10
nmbPRB = 200
nmbUsers = 0

while nmbUsers<MAX_USERS and nmbPRB>0 do

1:

2:

3:

4:

5:

6: userPRB = MAX_PRB X random/()

7: # Create a larger spread in number of PRBs
8: distribution = random()

9: if distribution < 0.4 then

10: userPRB = userPRB/8

11: else if distribution < 0.6 then
12: userPRB = userPRB/4

13: else if distribution < 0.9 then
14: userPRB = userPRB/2

15: end if

16: newUser (userPRB)

17: nmbUsers++

18: end while

Fig. 6. Pseudocode for user input parameter generation, where random ()
generates a random value between 0 and 1.
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The input parameter model varies the workload by increas-
ing the probability that a user has more layers and a more
complex modulation according to the algorithm in Fig. 10.
The probability (prob in Fig. 10) is increased/decreased every
200th subframe from a probability of 0.6% to a probability
of 100%. The probability is linearly increased over the first
34,000 subframes, upon which maximum workload is reached,
with every user having four layers and 64-QAM as modulation.
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After reaching maximum workload, the probability is linearly
decreased to 0.6% over the next 34,000 subframes. The
maximum and minimum number of layers that users have
across the 68,000 subframes are shown in Fig. 9.

M P il L

|

HIH

i T i T i v i i v i T i v
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000
Subframe

Layers

¥

Max
Min

1

0

Fig. 9. The maximum and minimum number of layers that users have for
every 25th subframe.

The complete pseudocode algorithm for the input parameter
model is given by replacing line 16 in Fig. 6 with the
pseudocode in Fig. 10. The input parameter model does not
try to model a realistic use case, but rather tries to effect a high
variation with rapid changes in the number of users, PRBs, and
layers and rapid change of modulation while still achieving a
continuous trend in increasing/decreasing the total workload
over a number of subframes.



1: prob = current_probability (subframe)
2: userlLayer =1

3: if prob > rand() then

4: userlLayer++

5: end if

6: if prob > rand() then

7 userLayer++

8: end if

9: if prob > rand() then

10 userlLayer++

11: end if

12: userMod = MOD_QPSK

13: if prob > rand() then

14 userMod = MOD_16QAM

15 if prob > rand() then

16 userMod = MOD_64QAM

17 end if

18: end if

19: newUser (userPRB, userlLayer, userMod)

Fig. 10. Pseudocode for layer and modulation input parameter generation.

B. Hardware Platform

We evaluate the LTE benchmark on the Tilera TILEPro64
processor [16]. We choose the TILEPro64 because it is highly
parallel and is optimized for low power, thus it is suitably
representative of the type of (proprietary) processors found in
LTE base stations.

The TILEPro64 processor consists of 64 identical 32-bit
VLIW cores that are connected through an on-chip mesh
network. The VLIW cores consist of: i) a three-stage pipeline
with an issue width of three instructions, ii) a private 16 kB
L1 instruction cache, and iii) a private 8kB L1 data cache.
Each core also has a 64 kB L2 cache that is shared with all
other cores, thus creating a virtual L3 cache of 4 MB.

Each worker thread of the LTE benchmark is mapped to a
single core of the TILEPro64. One of the TILEPro64’s cores
is dedicated to drivers, and another is used for the maintenance
thread; the 62 remaining cores are available for running worker
threads. When executing the LTE benchmark with maximum
workload and 62 worker threads, a new subframe can be
received every fifth millisecond. This rate results from the
general-purpose nature of the TILEPro architecture: it contains
no application-specific optimizations for baseband processing,
as would dedicated base-station hardware. We run the same,
generic C code on the TILEPro64 as on x86 architectures with
Linux as the operating system. In conventional base stations
a tailored real-time operating system is used.

To study power dissipation, we measure the voltage drop
across two resistors that are used to balance the load between
the two phases of the buck converter supplying power to the
TILEPro64 chip. Our National Instruments USB-6210 [17]
data acquisitioning unit can sample the two voltages at a
minimum period of eight microseconds. We calculate the
current by dividing the two voltages by the value of the
precision resistors over which the voltage drops are measured
and then adding them together. The current varies rapidly,
so we compute the root mean square (RMS) value of the

current for every 100 milliseconds. The supply voltage for the
TILEPro64 chip is 1.0 V. The measured current is therefore
equal to the power dissipated, and we use power (W) for the
measurements presented in the following sections.

The TILEPro64 has an assembly “nap” instruction that
clock-gates the core on which it is executed. This instruction
can therefore be used to affect the dynamic power. There is
no easy way to reactivate a “napping” core; a core therefore
periodically wakes up to see if its status has changed, and if
not, it goes back to sleep.

The base power when the TILEPro64 chip performs no
work is 14W. We measure this by generating 63 threads and
mapping each to its own core of the TILEPro64 before the
“nap” instruction is executed. This effectively puts 63 of the
cores to sleep and gives us a base-power of 14W. This is also
the power measured when no applications are executed.

VI. POWER-AWARE RESOURCE MANAGEMENT

LTE uplink processing is predictable in that a new subframe
is received every millisecond. Responsiveness requirements
limit the time permitted to process a subframe. A base station
therefore processes no more than two to three subframes
concurrently. If the workload of a subframe can be estimated
accurately, it becomes possible to predict the amount of
computational resources required. Such prediction must be
done for each subframe, and the amount of required resources
potentially changes with every received subframe.

A. Subframe Workload Estimation

The work of a subframe is characterized by its input
parameters (see Sec. IV), and it is the responsibility of the base
station to allocate resources to users. The input parameters of a
subframe are therefore known before the subframe is received.
Knowing the correlation between workload and subframe input
parameters makes it possible to predict a subframe’s workload.
To determine if such a correlation exists, we created an
input parameter model that produces a single user for which
the number of physical resource blocks (PRBs), layers, and
the modulation are all varied. The subframe lasts for mere
milliseconds, and the fact that multiple subframes (two to
three) are processed in parallel makes it difficult to measure the
workload of a single subframe. To circumvent this problem,
the parameter model creates a steady state with the same user
parameter configuration (fixed number of PRBs, layers, and
modulation) for a duration of ten seconds. The workload is
measured by inserting get_cycle_count() function calls before
and after every part of the benchmark that performs useful
processing. The number of useful cycles for each part of
the benchmark is calculated by computing the delta of the
two get_cycle_count() function calls (Eq. 1). Summing all the
compute cycles and dividing by the total number of cycles
over a period of time gives the activity of the system (Eq. 2).
In our case, we chose to compute the activity during a period
of one second. This results in ten activity measurements for
every input parameter configuration.
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Fig. 11 shows the results when the number of PRBs is
increased from two to 200 in steps of two for different numbers
of layers and different modulations. The figure shows a clear
correlation between subframe input parameters and the activity
of the system: activity has a linear relation (k) to the number of
PRBs for a given set of layers (L) and modulation (M) (Eq. 3).
The design of our subframe workload predictor is based on
these results (Fig. 11). Given a set of equations for estimating
the activity for all layer and modulation configurations, the
total workload of a subframe can be modeled as the sum of
the workload for each user of the subframe (Eq. 4).
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Fig. 11. Correlation between subframe input parameters for a single user
and the workload (Activity) of 62 worker threads on a TILEPro64.

estimated_user_activity = PRBs X krp 3)
estimated_activity = Z estimated_user_activity; (4)

The estimated workload given by Eq. 4 is based on simpli-
fications made to measure the activity as a result of subframe
input parameters and the assumption that a user’s workload is
not affected by the workloads of other users. To verify that
our workload estimates are valid, we use the input parameter
model described in Sec. V-A to calculate the average estimated
activity during one second and then compare it with measured
activity for the same period. Fig. 12 shows the result.

Since the workload of a single subframe is practically
impossible to measure, we measure the average workload
over one second, instead. One second is also the period at
which the input parameter model changes the probability
for increased/decreased workloads. The figure shows that the
estimated workload tracks the measured workload well. The
maximum error is an underestimation of 5.4%, and the average
error is only 1.2%.
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Fig. 12. Measured and estimated workload averaged over 200 subframes (1
second) for a total of 68,000 subframes (340 seconds) executed by 62 worker
threads on a TILEPro64.

B. Dynamic Power Reduction

Armed with the workload estimation model described in
Sec. VI-A, it is now possible to adjust the number of active
cores in the system to the actual workload of the subframes
being computed. To provide some margin of error in the
estimation, the system is over-provisioned with two cores.
The number of active cores is calculated for each subframe
according to Eq. 5.

active_cores = estimated_activity x max_cores + 2 (5)

Applying Eq. 5 to the subframes generated by the input
parameter model described in Sec. V-A yields an estimate
of the number of active cores. Fig. 13 shows the estimated
number of active cores (to improve readability, we again
show results for every 25th subframe). The number of active
cores changes rapidly throughout the duration of the 68,000
generated subframes.

Worker threads deemed not to be required (according to
Eq. 5) are deactivated with “nap” instructions. Fig. 14 shows
the resulting power savings. The figure shows the power
measured on the TILEPro64 as the LTE benchmark is executed
with (NAP) and without (NONAP) deactivating cores. It shows
that dynamically adapting the number of active cores reduces
power. The difference is largest when the workload is low
(6-7W), resulting in a reduction of more than 25%. For the
maximum workload NAP also achieves a lower maximum
power of almost 1W, or 3%. This is because the average power
for NONAP is 18‘% higher (25W) than for NAP (20.5W).
The higher average power raises the TILEPro64’s temperature,
which increases power. The effects of increased temperature
are also shown by the higher power values (on the right side
of the graph) after the maximum load has been reached.
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Fig. 13. Estimated number of active cores for every 25th subframe.
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Fig. 14. Measured power as a result of executing the LTE benchmark
with (NAP) and without (NONAP) deactivation of cores based on workload
estimation.

A logical alternative to deactivate cores based on estimated
workload (proactive) is to deactivate cores when there is no
work to be performed (reactive). By deactivating threads that
cannot find any tasks to steal (IDLE) we reduce power (20.7W)
by close to what the estimated deactivation achieves (NAP),
as shown in Fig. 15. For low workloads, deactivating cores
based on estimated workload achieves lower power. This is a
result of a majority of the cores being deactivated, and thus,
these cores do not periodically look for work to perform. This
periodical check, which is required in a reactive system, causes
overheads that result in a higher power. On average, the power
is increased by 1%.

Combining the two techniques (proactive and reactive)
achieves even better results. By deactivating cores based on
estimated workload, the overhead of looking for non-existent
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Fig. 15. Measured power as a result of executing the LTE benchmark
when cores are not deactivated (NONAP), deactivated based on estimated
workload (NAP), deactivated when there is no work to perform (IDLE), or
when combining the two techniques of deactivating cores based on estimated
workload and when there are no work to perform (NAP+IDLE).

work can be avoided. The remaining active cores will not be
utilized to 100%, as there are fluctuations in how much the
subframe processing can be parallelized. Deactivating cores
that have no work to perform reduces power further, as shown
by NAP+IDLE in Fig. 15. The combined techniques yield an
average power of 19.9W, which is an additional reduction of
3% compared to only using NAP or a 20% reduction compared
to no core deactivation.

TABLE I
AVERAGE POWER DISSIPATION WHEN NOT INCLUDING BASE POWER
Technique Power (W) | Reduction
NONAP 11 0%
IDLE 6.7 39%
NAP 6.5 41%
NAP+IDLE 5.9 46%

Table I shows the average power for the four different use
cases when the base power (see Sec. V-B) is subtracted from
the total power. The base power cannot be affected by purely
using clock gating, and as such is a constant factor of 14W.
As the table shows, clock gating in any form is important for
reducing the dynamic power of the cores. It also shows that
by estimating the workload the dynamic power is reduced by
an additional 7%, on average.

C. Static Power Reduction

Clock gating is an efficient method for reducing dynamic
power. One property of clock gating is its responsiveness:
a circuit can be clock gated on a cycle-by-cycle basis. This
property makes it possible to use reactive techniques in which
the number of active cores can quickly be adjusted to the
system workload.



Techniques for reducing static power do not share this
property, and it generally takes time to power on or off a core.
The act of turning a core on or off also incurs an overhead,
due to large power cut-off transistors being switched. These
properties put limits on when a decision for turning cores
on and off is made and how often a core is power gated.
If the workload can be estimated ahead of time, that provides
time for turning on cores to meet the computational demand
of increasing workloads and for turning off cores as soon as
the computational demand decreases. A power-aware resource
manager can exploit that the LTE base station knows ahead of
time what the workload will be for a particular subframe. The
schedule for a subframe is known at least two milliseconds
before processing begins, providing ample time to adjust the
number of powered-on cores.

The hardware platform we use for executing the LTE bench-
mark does not provide power gating for cores. We therefore
rely on an analytical model to estimate reductions in static
power. Separate power domains (power grids) are required
for the circuits to be power gated. Power gating of a single
core is possible, but for this work we assume that cores are
managed in groups of eight. For a 64-core chip this requires
eight power domains, which is a reasonable number for a chip
of this complexity.

The number of powered-on cores for a subframe is esti-
mated by discretizing the estimated number of active cores:

(6)

To assure that enough cores are powered on and to reduce
the number of cores being turned on and off, we take the
maximum number of active cores across five consecutive
subframes. Input parameters are known two subframes in
advance, and a maximum of three subframes are concurrently
computed in the system. The number of powered-on cores for
each duration of a subframe can be calculated according to
Eq. 7, where active; represents the subframe that has been
received and is about to be processed.

active = [active_cores/8] X 8

powered = mazx(active; o, active; 1, ™
active;, active;_1, active;_o)

If we assume that 25% of the TILEPro64’s 14W base power
(3.5W) is due to the 64 idle cores, the static power of each
core is 55 mW. We also assume that turning on or off a core
dissipates 15 mW of additional power (OH) for the duration of
a subframe (Eq. 8). The total power savings for each subframe
can then be calculated according to Eq. 9.

OH = |powered; — powered;_1| x 0.015 )

power_saving = (64 — powered;) x 0.066 — OH  (9)

Fig. 16 shows the result if power gating were used to
power off unneeded cores. These data are calculated by
subtracting the savings given by Eq. 9 from the NAP+IDLE
case. The average power is 18.5W, which is a reduction of
1.4W (7%) compared to when applying no power gating. For
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Fig. 16. Estimated power reduction when applying power gating based on
estimated number of active cores.

low-workload scenarios the reduction in power is 3W or 19%
compared to the best achieved dynamic power management.
Compared to the case where workload estimates are not used
(IDLE), the power reduction is more than 4W (>24%) for
low-load cases.

TABLE I
AVERAGE TOTAL POWER DISSIPATION

Technique Power (W) | Relative NONAP | Relative IDLE
NONAP 25 0% +21%
IDLE 20.7 -17% 0%

NAP 20.5 -18% -1%
NAP+IDLE 19.9 -22% -4%
PowerGating 18.5 -26% -11%

Table II shows the average power and the improvements
that can be achieved by actively managing resources (Relative
NONAP). The table also shows the improvements that our
proactive workload estimation technique provides over reactive
resource management (Relative IDLE). These data is for a
use case where the average workload is 50% (see Fig. 12).
A typical workload for base stations is 25%, for which our
workload estimation method performs even better.

VII. RELATED WORK

We know of no other open-source benchmark that models
an LTE uplink receiver, but several existing benchmarks model
portions of the LTE processing.

The BDTi OFDM receiver benchmark™ [18] is a multi-
channel design for evaluating multi-core and other high-
performance processing engines. Public information about this
benchmark is limited, but the benchmark seems to target a
single user system. This is in contrast to a mobile base station
where multiple users are serviced in parallel. This benchmark
requires licenses for use.



MiBench [19] is a freely available embedded benchmark
suite that includes GSM related processing. The bench-
mark implements voice encoding and decoding and uses a
combination of time and frequency division multiple access
(TDMA/FDMA). The inputs for this benchmark are speech
samples, and thus, the computational effort required for this
benchmark is low.

The LTE Uplink Receiver PHY benchmark relies on work
stealing to distribute the workload across a multi-core pro-
cessor. Work stealing has been shown to achieve good load
balance across multiple cores, to scale well with the number of
cores, and to achieve efficient performance in an environment
where the number of cores changes at runtime [14], [15].

One of the most important steps in dynamic power man-
agement is to predict future load and adapt available resources
accordingly to achieve acceptable performance at low power
dissipation. Choi et al. present a technique for setting the
voltage and frequency of a dynamic voltage and frequency
scaling (DVFS) system based on frame-based prediction for
an MPEG decoder [20]. Like us, they take advantage of
application-specific knowledge to estimate the workload of an
application based on its inputs. In their case, they use frames
in MPEG decoding, while we use subframes in LTE baseband
processing. We use our workload estimation for clock gating
and show the potential when power gating cores, but we could
also use it in combination with DVES to create further power
management opportunities.

VIII. CONCLUSIONS

We present an open-source LTE Uplink Receiver PHY
benchmark that realistically represents the baseband process-
ing of an LTE uplink. Using this benchmark, we show that it is
possible to estimate the workload of a subframe and that this
estimate can be used for power-aware resource management.
We show that if power gating were available, the power of a
TILEPro64 processor executing the LTE benchmark could be
reduce by more than 24% (11% on average) compared to the
best achieved power without using workload estimation for
resource management.

The presented results are for an input parameter model with
an average workload of 50% and with a minimum activity
above 10% (see Fig. 12). This is an overly pessimistic use
case, since most base stations have an average load of about
25% and have long periods where the load is much lower
(e.g., nights). The input parameter model is created to stress
the workload estimation and resource management and not
favor our proposed technique. Our technique would show even
greater benefits for a more realistic use case.
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