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Abstract—Speculative side-channel attacks consist of two parts: The
speculative instructions that abuse speculative execution to gain illegal
access to sensitive data and the side-channel instructions that leak the
sensitive data. Typically, the side-channel instructions are assumed to
follow the speculative instructions and be dependent on them. Speculative
side-channel defenses have taken advantage of these facts to construct
solutions where speculative execution is limited only under the presence
of these conditions, in an effort to limit the performance overheads
introduced by the defense mechanisms.

Unfortunately, it turns out that only focusing on dependent instructions
enables a new set of attacks, referred to as “speculative interference
attacks”. These are a new variant of speculative side-channel attacks, where
the side-channel instructions are placed before the point of misspeculation
and hence before any illegal speculative instructions. As this breaks the
previous assumptions on how speculative side-channel attacks work, this
new attack variant can be used to bypass many of the existing defenses.

We argue that the root cause of speculative interference is a priority
inversion between the scheduling of older, bound to be committed, and
younger, bound to be squashed instructions, which affects the execution
order of the former. This priority inversion can be caused by affecting
either the readiness of a not-yet-ready older instruction or the issuing
priority of an older instruction after it becomes ready. We disrupt
the opportunity for speculative interference by ensuring that current
defenses adequately prevent the interference of younger instructions with
the availability of operands to older instructions and by proposing an
instruction scheduling policy to preserve the priority of ready instructions.
As a proof of concept, we also demonstrate how the prevention of
scheduling-priority inversion can safeguard a specific defense, Delay-
on-Miss, from the possibility of speculative interference attacks. We first
discuss why it is susceptible to interference attacks and how this can
be corrected without introducing any additional performance costs or
hardware complexity, with simple instruction scheduling rules.

I. INTRODUCTION

Speculative side-channel attacks abuse speculative execution to
gain access to data that would not be accessible otherwise. The
attacks consist of two main parts: One or more speculatively executed
instructions that are able to temporarily bypass software and hardware
barriers to illegally gain access to sensitive data (“the secret”),
and one or more side-channel instructions that leak said secret
from the speculative to the non-speculative domain. These side-
channel instructions can in turn be categorized into two parts: The
transmitter and the receiver. The transmitter is executed within the
speculative domain and has access to the speculatively accessed secret
data, but it cannot directly communicate the secret outside of the
speculative domain. Instead, the transmitter performs one or more
actions that change the microarchitectural state of the processor in a
way that is dependent on the value of the secret. In turn, the receiver,
which is executed outside the speculative domain, can perceive these
microarchitectural state changes and, indirectly, infer the secret.

It has generally been assumed that the transmitter side-channel
instructions are dependent on the speculative access instructions,
and that the receiver instructions are executed either in parallel or
after the transmitter instructions, depending on the nature of the

microarchitectural state being used as the communication channel.
However, a new variant of speculative side-channel attacks, the
speculative interference attacks, introduced by M. Behnia et al. [5],
breaks this assumption. Under a speculative interference attack, the
receiver, or even part of the transmitter, exists before (in program order)
the speculative instructions that illegally access the secret data. This
breaks the assumptions that many speculative defense mechanisms
are designed around, leading to information leakage.

More specifically, speculative interference, as described by M.
Behnia et al. [5], uses speculative instructions to interfere with
the scheduling of older instructions that are on the correct path of
execution and bound to commit. By changing the order in which these
instructions are executed (e.g., a different order of loads accessing the
cache), it is possible to induce observable microarchitectural changes
in the system, such as changes in the cache replacement state [5],
[8]. This is achieved by having secret-value-dependent speculative
instructions that are issued before and interfere with earlier (in program
order) non-speculative instructions.

While detailed information regarding instruction schedulers in actual
microarchitectures is scarce, the job of any instruction scheduler is to
create a prioritization, e.g., based on age, of all the ready instructions
such that those with the highest priority can be identified and issued.
The implemented prioritization specifies an order in which ready
instructions will be executed. We can see speculative interference
as a priority inversion in instruction scheduling. Assuming priority
based on age, an older, bound to be committed instruction loses its
chance to execute in the earliest cycle it becomes ready, because
some younger speculative instruction hogs a resource that is needed
for its execution. For example, a younger integer division instruction
that becomes ready before an older instruction of the same type
might occupy the integer division functional unit (FU) for several
cycles, preventing any other instructions (including older ones that
have become ready in the meantime) from being issued. Normally,
without taking security into account, such priority inversions do not
matter much — after all, the goal is to maximize performance and if a
priority inversion leads to a better utilization of the core’s out-of-order
resources, so much the better. However, from a security point of view,
such priority inversions are the cause of speculative interference.

In this work, we first characterize the problem of speculative
interference attacks in the context of priority inversion. Then, having
developed an understanding of the underlying issue, we discuss a
generic method for preserving the execution order of instructions and
preventing the issue. The key to avoiding such priority inversions
is to assure that no lower priority instruction can prevent a higher
priority ready instruction from executing, regardless of when the
lower priority instruction became ready and was issued. Finally, as
a proof-of-concept, we apply our method on an existing state-of-
the-art speculative side-channel defense, Delay-on-Miss [14], [16],
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1 i f ( . . . ) / / m i s p r e d i c t e d b r an ch
2 s e c r e t = l o a d ( . . . ) / / i l l e g a l a c c e s s
3 i f ( s e c r e t == 1) / / s e c r e t − va lue − d e p e n d e n t
4 b = l o a d ( B addr )
5 a = l o a d ( A addr )
6 e l s e
7 a = l o a b ( A addr )
8 b = l o a d ( B addr )

Listing 1. Typical Spectre attack.

1 a = l o a d ( A addr )
2 b = l o a d ( B addr )
3 i f ( . . . ) / / m i s p r e d i c t e d b r an ch
4 s e c r e t = l o a d ( . . . ) / / i l l e g a l a c c e s s
5 i f ( s e c r e t == 1) / / s e c r e t − va lue − d e p e n d e n t
6 i n t e r f e r e w i t h A ( )
7 e l s e
8 / / do n o t h i n g

Listing 2. Speculative interference Spectre attack.

such that priority inversion is prevented. Specifically, we discuss
which of the speculative interference attacks described by M. Behnia
et al. [5] are actually applicable to Delay-on-Miss and changes in
the instruction scheduling and miss status handling register (MSHR)
allocation policies to counteract them at no additional overhead.

II. SPECULATIVE INTERFERENCE ATTACKS

Speculative interference attacks [5] are a new variant of existing
speculative side-channel attacks. Specifically, they are a new way of
making observable microarchitectural changes to the system while
executing under speculation, with the goal of leaking speculatively
accessed secret data, bypassing some of the current state-of-the-art
defenses against such actions [1], [12], [15], [16], [21]. This is achieved
by breaking one of the main assumptions that defenses make about
speculative side-channel attacks, namely the assumption that the code
that modifies the microarchitectural state and leaks the secret follows,
in program order, the code that illegally (speculatively) accesses the
secret, and will be squashed when the misspeculation is detected.
Instead, using a speculative interference attack, it is possible for the
leaking instructions to precede (in program order) the illegal accesses
and to be on the correct, bound to be committed, path of execution.

As an example, we can compare a typical Spectre-type attack
(Listing 1) with a variant that utilizes speculative interference
(Listing 2). Both attacks utilize a replacement policy side-channel,
where the attacker is able to distinguish the order of two loads in
the cache by probing the replacement state of the cache [5], [8]. In
the typical Spectre example, the malicious code will first access the
secret illegally under speculation and then perform a secret-value-
dependent modification to the microarchitectural state of the processor.
In this case, the order between loading A_addr and B_addr changes
depending on the secret. Existing defences that focus on preventing
cache and memory speculative side-channels, such as InvisiSpec [21]
or Delay-on-Miss [16], will prevent these two loads from making
any visible changes to the replacement state of the cache, therefore
preventing any information leakage.

On the other hand, in the speculative interference variant, the two
loads appear before the mispredicted branch and the illegal access,
and are therefore not affected by defences like InvisiSpec or Delay-on-
Miss. For this example, let us assume that (with no interference) (i) the
load to A_addr is executed before the load to B_addr and (ii) both
loads will not be issued until after interfere_with_A has been

issued. Also, let us assume that interfere_with_A performs
some operation that will prevent the load to A_addr from being
issued when it becomes ready (but not the load to B_addr) and that
said operation is not inhibited by the deployed defense mechanism.
An example of such an operation would be interfering with the FUs
necessary for calculating A_addr itself. Since neither InvisiSpec
nor Delay-on-Miss try to hide or delay non-memory operations, the
interference will not be stopped and the order of the loads to A_addr
and B_addr will be affected in a secret-value-dependent way, thus
bypassing the defenses and leaking the secret information.

III. THE ROOT CAUSE: INSTRUCTION SCHEDULING

In a typical modern out-of-order (OoO) processor, newly decoded
and renamed instructions enter the instruction queue (IQ) and wait to
become ready and to be issued to an appropriate execution/functional
unit (FU). For an instruction to become ready, first all its operands
need to be ready. Then, for a ready instruction to be issued, there
needs to be an appropriate FU that will be available in the next cycle,
where the instruction will then be executed.

Since the processor is able to issue only a limited number of
instructions per cycle (issue width), regardless of how many ready
instructions might be waiting in the IQ, a policy is needed to
decide which instructions should be prioritized. When it comes to
commercial processors, exact details on the subject are scarce, but
one well established policy (used in actual architectures) is age-
based or pseudo-age-based [4], [9], [11], [17] prioritization. As an
optimization, a (pseudo-)age-based policy can give higher priority to
load instructions over other instructions, while still maintaining the age-
order between loads. In essence, regardless of optimizations between
different instruction types, we typically expect ready instructions to
be roughly ordered by age, with respect to the order in which they are
issued to an FU. This is natural, as commit has to happen in program
order, where older instructions need to be committed before younger
ones. If we did not prioritize the older instructions at the issue stage,
then we would be inhibiting their timely commit and risk not having
enough commit bandwidth when they do become ready, thus losing
performance [17]. The current known state-of-the-art implementations
include shifting queues [10], where the instructions are inserted into
the queue in order and gaps in the queue are filled by shifting the
instructions, and age-matrix based queues [17], where the queue itself
is not kept in order but instead a matrix holding the age dependencies
between instructions is used to order the ready instructions. Comparing
the different queue implementations is beyond the scope of this work
and we will discuss how our proposed solutions can be implemented
in either of these.

However, this age-based prioritization only happens between ready
instructions, as we do not want older instructions that are not ready
delaying younger ready instructions. Even if a younger instruction were
to temporarily prevent (by occupying a resource) an older instruction
from being issued, it would not be an issue, since the main concern
of the scheduler is to utilize the pipeline to its fullest, in an effort to
achieve the best performance possible. However, this changes when
we also consider security and speculative interference attacks.

A. Priority Inversion in Instruction Scheduling

First, let us assume that the instruction scheduler has a well defined
and deterministic policy to select ready instructions, which defines
a total order (priority) between all the ready instructions currently
waiting in the instruction queue. For simplicity and without loss
of generality, we will consider this order to be strictly based on
instruction age, where “age” is defined by program order and an

2



instruction is considered “older” than another instruction if it appears
earlier in the program order. At each cycle, as the execution of the
program progresses, the priority of the instructions changes, with
new instructions becoming ready as dependent instructions complete
their execution. We can now define an instruction as priority issued
(where by issued we mean – more broadly – that an instruction has
obtained all the resources1 it needs for unimpeded execution) if:

1) its ancestor instructions (i.e., the instructions producing its
operands and their ancestors, as well as other instructions that
directly affect the execution of the instruction, such as branches)
were also priority issued and

2) when ready, it cannot be prevented from being issued and
executed by an instruction with a lower (if considered in the
same cycle) priority.

Expressing this differently, a ready instruction is not priority issued
if either it or any of its ancestor instructions were prevented from
being issued and executed by an instruction that would have lesser
priority if both instructions were ready at the same time. Therefore,
instructions that become ready earlier can still violate the priority
issue of instructions that become ready later, if the later instructions
would have had higher priority if both sets of instructions were ready
at the same time. Note also that the definition is applied recursively
to the whole dependency chain of instructions needed before the
instruction can become ready, including non-data dependencies such
as control dependencies. This is necessary to cover the cases where
it is possible to indirectly interfere with an instruction by interfering
with older instructions that precede it. Furthermore, the definition
covers not just the uninhibited issue but also the execution of the
instruction. We focus mostly on issue because that is typically the
earliest out-of-order stage in the pipeline, where instructions begin
to be re-ordered. Finally, note that the definition only applies when
instructions become ready and depends on the exact scheduling policy;
it can thus be different than the actual program order between all
instructions in the program.

Now (assuming, without loss of generality, an age-based policy)
consider two instructions, OLDER and YOUNGER (in program order),
both of which require the same non-pipelined resource for several
cycles (e.g., integer division). If both OLDER and YOUNGER become
ready at the same time, then OLDER will be issued first, as it has
higher priority than YOUNGER. However, if YOUNGER becomes ready
even one cycle before OLDER, it will be issued first and proceed to
occupy the non-pipelined resource. This does not affect the priority
issue of OLDER, as older is not ready yet. At the next cycle, OLDER
becomes ready but can no longer be issued, because the non-pipelined
resource is now occupied. Hence, the OLDER (higher issue-priority)
instruction is now being prevented from being issued by the YOUNGER
(lower issue-priority) instruction and is no longer priority issued, due
to a priority inversion in the scheduling priority of instructions.

Essentially, at each cycle, the ready instructions in the IQ are
in a total order, typically age based. The highest priority of these
instructions (in our case, the oldest) is always priority issued if it is
not prevented by a resource conflict, i.e., it is always priority issued
if all the necessary resources (see footnote 1) exist in the system at
that cycle. Some resources, particularly single-cycle or fully-pipelined
resources, can always be considered as “free,” as the only way for them
to be occupied by a lower issue-priority instruction would be if said
instruction has been issued over a higher issued priority in the same
cycle, in which case the scheduler is broken as it failed to select the
ready instruction with the highest priority. Thus, between all the ready

1This includes execution resources beyond FUs, such as TLBs, MSHRs, etc.

instructions, instructions that only depend on single-cycle or fully-
pipelined (single-cycle repeat) units will always be priority issued.2

On the other hand, multi-cycle non-pipelined or partially pipelined
(with a repeat of more than a single cycle) resources (Note: for brevity,
we will refer to all these resources simply as “non-pipelined”), which
once allocated remain occupied for several cycles, may appear to be
busy, thereby preventing the highest issue-priority instruction from
being priority issued. We discern two cases:

• A resource needed by the instruction A, which is the highest-
priority ready instruction (i.e., oldest ready instruction in the IQ)
is busy because it is held by instruction B that is older than A.
This does not violate the second requirement for an instruction to
be priority issued, because if A and B were considered for issue
at the same time, B would have a higher priority and would still
get the resource. Hence, no priority inversion happen in this case.

• When B is younger than A. In this case, if A and B were
considered for issue at the same time, A would have a higher issue
priority and would get the resource. The fact that B has it and is
preventing A from being issued constitutes a priority inversion
and violates the requirement for A to be priority issued. In fact,
this is exactly the case in the earlier YOUNGER/OLDER example.

B. From Priority Inversion to Speculative Interference

Let us now partition all in-flight instructions into two categories:
non-speculative and speculative. Non-speculative are all instructions
for which, unless prevented by an external factor (such as an interrupt),
it can be determined that they are bound to commit successfully. In
the simplest version, only the head of the reorder buffer (ROB) can
be considered as non-speculative, but in practice it is possible to
extend this to more instructions, as long as they meet the necessary
commit criteria [2], [6], [15], [16]. All other instructions, which are
either bound to be squashed or of unknown state, are considered
as speculative. As the execution progresses and speculation (e.g.,
branch predictions) is resolved, more and more instructions in the
ROB transition from speculative to non-speculative. Since one of the
conditions for an instruction to be successfully committed is that all
the instructions that precede it (in program order) in the ROB have
also been committed successfully, non-speculative instructions always
precede speculative instructions and, under an age-based scheduling
policy, the non-speculative instructions will always have a higher
issue-priority than the speculative ones. However, the scheduler is
designed to only focus on ready instructions, in an effort to avoid
unnecessary bubbles in the pipeline.

During a speculative interference attack, one or more younger
speculative instructions become ready before an older (eventually non-
speculative) instruction and occupy a non-pipelined shared resource,
causing a priority inversion.3 Due to this priority inversion, the now
ready old non-speculative instruction loses its priority issue and is
delayed, which causes observable microarchitectural side-effects, thus
leaking sensitive information. Since this is a direct result of the issue
priority inversion, we can conclude that (i) the priority inversion is
the root cause for speculative interference attacks and (ii) we can
prevent speculative interference attacks by preventing such priority
inversions from happening.

2Note that this refers to ready instructions, assuming that their ancestors
have already been priority issued, to meet the full definition.

3Note that while the attack does not necessitate age-based issue priority, it
is always necessary to be able to make an assumption about the issue priority
of instructions, as the goal of the attacker is to reverse the normal execution
order of instructions. In practice, the scheduler has to have a way of resolving
conflicts, so there will always be some natural ordering between instructions,
regardless of how sophisticated or random that might be.
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C. Preventing Priority Inversion

Priority inversion is a known problem, especially in the fields
of operating and real-time systems. Solutions such as preemption,
assigning higher priority to specific tasks that hold resources, or pre-
allocation of resources already exist, but we cannot apply existing
solutions blindly, as we have very strict requirements:

• Some solutions for the priority inversion problem assume that
the priority inversion does not need to be solved immediately, as
long as it is solved in a timely manner. However, depending on
the nature of the side-channel being utilized, even a single cycle
difference in the scheduling of the instructions can lead to long
lasting side-effects in the system. For example, delaying a load
instruction by one cycle can lead to changes in the state of the
caches, which can be easily observed for several cycles afterwards.
Therefore, the solutions we use need to prevent priority inversion
immediately and with no additional latency.

• Some solutions would come at a too high cost when implemented
in hardware. For example, preemption-based solutions might
require a lot of additional storage, which would be prohibitive
due to area and latency costs, or might require flushes or replays
in the pipeline. Therefore, the solutions we use need to take into
consideration the characteristics of the resources involved and
the additional hardware cost they might introduce.

As a general rule, if we can preempt a resource so that it can
be used by a higher issue-priority instruction, without introducing
additional latencies or costs, then this would be the preferred solution.
When this is not possible, we fall back to a pre-allocation based
solution, where resources are allocated to instructions when they
appear in the IQ, even before they become ready. In essence, instead of
allocating resources to ready instructions as they appear, the non-ready
instructions are also taken into consideration. This is not the optimal
approach as, unlike preemption, it restricts instruction execution at
all times, regardless if during execution an instruction would actually
cause a priority inversion or not. Preemption on the other hand is
only applied dynamically when the need arises.

IV. PROOF-OF-CONCEPT USE CASE

In this section, we describe how speculative interference can be pre-
vented in the context of a state-of-the-art mitigation technique. We first
describe the general principles behind Delay-on-Miss, which delays
speculative loads if they miss in the L1 cache to prevent speculative
side-channels in the memory hierarchy. We also explain how and
where priority inversions due to speculative interference can arise, as
well as how these can be corrected. Specifically, we will discuss how
interfering with either non-pipelined instructions or MSHR allocation
can lead to information leakage and what modifications we can make
to the issue and MSHR allocation policies to prevent this.

It should be noted that while we focus on Delay-on-Miss as our
proof-of-concept use case, other defense mechanisms are susceptible
to the exact same issues [5] and our example solutions are not case
specific and can be applied to more than just Delay-on-Miss.

A. Delay-on-Miss

Delay-on-Miss [16] (DoM) is designed to protect against specu-
lative side-channels that target the memory hierarchy as the side-
channel mechanism. Other side-channels, such as non-speculative
side-channels or side-channels that do not target the memory hierarchy,
are outside the scope of DoM and are generally not affected by it.
This is a trade-off between security and performance, as memory
hierarchy based side-channels have a number of advantages over
other side-channels, such as (i) observability across several cores

and contexts, (ii) the fact that caches and memories are typically
not fully associative, and thus it is possible to abuse the indexing
to leak several bits of information at once, and (iii) that changes
in the memory hierarchy can persist until overwritten, even after
the memory operation has finished execution. However, as we have
seen in the speculative interference attack example (Section II), it is
possible to use speculative non-memory operations to affect the order
of non-speculative memory operations, therefore bypassing DoM and
leaking sensitive information. We will discuss how this issue can be
handled efficiently by changing the issue policy for non-pipelined FU
instructions in Section IV-B.

DoM works under two basic principles. First, it is hard to hide the
side-effects of loads in the memory hierarchy on a cache miss, because
reading data into a cache requires complex interactions between the
rest of the system, as seen in previous solutions such as InvisiSpec [21]
and Ghost Loads [15]. Instead, DoM opts to delay misses from
speculative loads until they are non-speculative. On the other hand, a
load that hits in the L1 cache requires only small modifications to the
cache state, e.g., updating the replacement state, which are outside
the critical path of the access operation. Thus, DoM only delays loads
that miss in the L1 cache, and permits loads that hit in the L1 cache
to execute speculatively, only delaying their non-critical side-effects.

In order to help reduce the performance overhead of delaying L1
misses, DoM tries to allow for as much memory level parallelism
(MLP) as possible, while remaining secure. To achieve this, DoM
will treat accesses to the L1 cache that miss in the cache but hit in
an MSHR as a hit [14]. DoM will prevent speculative loads from
allocating an MSHR, so an existing MSHR indicates that the data has
already been requested by a non-speculative access. Any side-effects
caused in the memory hierarchy is due to the initial non-speculative
instruction that in the first place allocated the MSHR. However, the
L1 cache needs to know where to send the data for the speculative
load, which can be achieved by setting a target for the speculative
load in the MSHR. Since each MSHR has a limited number of targets
and loads that cannot allocate a target are delayed, allocating targets
from speculative loads can lead to observable side-effects. Separating
the MSHRs between speculative and non-speculative accesses would
not work, as it is not possible to know in advance if a speculative
access will eventually become non-speculative or not, while also
introducing area and energy overheads. Technically, on a typical
implementation the lack of available MSHR targets will not prevent
a memory operation from being issued by the scheduler, but the
instruction will not be able to execute and will have to be rescheduled
at a later time. Therefore, even if the scheduling mechanism is not
directly involved in delaying the instruction (due to how memory
operations are implemented in the pipeline), the effect is the same as
if the instruction was prevented from being issued. For this reason,
we consider this as the same case of priority inversion as for the
FUs, and we will discuss how this issue can be handled efficiently
by altering the MSHR allocation policy in Section IV-C.

B. Pre-allocation Policy: Multi-cycle Non-Pipelined FU Issue

As explained in Section II, multi-cycle partially/non-pipelined
functional units (for brevity: “non-pipelined FUs”) can prevent
instructions from being priority issued when occupied by a lower
priority instruction. This issue does not appear in single-cycle or
fully-pipelined units, which significantly limits the scope of the issue.
Specifically, other than integer and floating point division, floating
point square root (when present), and specialized macro operations
(e.g., encryption etc), we expect all other operations to be either single-
cycle or fully pipelined when implemented on a modern processor.
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At the same time, it is not easy to apply preemption to such units.
Even if we were to make the generous assumption that it is in fact
possible to reset a unit and issue a new instruction to it within a
single cycle, we still run into the problem of having to re-issue the
preempted instruction at a later time. This introduces complications
into the scheduling of instructions in the pipeline, as instructions can
now have arbitrary execution latencies and need to be replayed when
preempted. While such issues can be handled (as they already are,
for example, for load instructions) this does come with an increased
complexity and introduces additional delays [3], which in turn might
violate the priority issue of instructions.

Due to these two observations, that only a limited set of instructions
need to be handled and that preemption can be costly and ineffective,
we handle such cases by modifying the issue policy for non-pipelined
instructions to always issue instructions in program order. In practice,
instead of just looking at the ready instructions, the scheduler needs
to be modified to also consider the non-ready instructions that require
the same FU and only issue an instruction if no older instructions
(ready or not) exist:

a) Age-matrix implementation: An age matrix (that represents
instructions in rows and columns) resolves scheduling conflicts based
on age [17]. Briefly, in every cycle, the scheduler picks for issuing
a subset of the ready instructions that are bidding for FUs. The
age matrix allows older instructions to cancel the bids of younger
instructions, thus making the latter ineligible for picking. To enforce
a pre-allocation policy in an age matrix implementation, we simply
modify the age-matrix to allow an older non-pipelined instruction to
cancel the bid signals of younger instructions, even when the older
instruction is not yet ready and bidding. More specifically, we change
the age matrix conflict signal allowing it to be driven not only by the
bid/ready signal, which is the normal operation, but also by a one-bit
register per instruction that is set for non-pipelined instructions when
they enter the instruction queue.

b) Shifting-queue implementation: In a shifting queue, the
implementation is even simpler, as we only need to modify the
scheduler so that it never checks past the first non-pipelined instruction,
regardless if it is ready or not.

With either of these implementations, if the IQ consists of one
unified queue for all instructions, then the proposed modifications will
also affect single-cycle or fully pipelined instructions, significantly
limiting the ILP. For this reason, we propose using a partially split
queue implementation, where each non-pipelined instruction type has
its own queue4 and the scheduler picks ready instructions from each
of the queues (e.g., [13]).

Intuitively, we might assume that a pre-allocation restriction in
the scheduler would lead to significant performance loss, but we
will see in the evaluation (Section V) that this is not true. After
all, the majority of the instructions (most ALU operations, including
branches, and memory operations) fall under the single-cycle or
fully-pipelined categories, which remain unaffected. In addition, the
restrictions only apply between instructions that require the same
FU, older instructions that require a different FU do not prevent
younger instructions from being issued when ready. If we could
augment the scheduler with knowledge about when an instruction
will eventually become ready, it would also be possible to issue lower
priority instructions as long as they would be finished by the time the
higher priority instructions became ready. However, since we cannot
depend on speculative scheduling, such an optimization would require

4We will see in the evaluation that in practice we only need two queues,
one for all the non-pipelined instructions and one for the rest.

analyzing the data flow during execution and calculating strict lower
bounds for when each instruction will become ready, which is both
complicated and, as we will see in Section V, unnecessary.

C. Preemption Policy: MSHR Allocation

Under DoM speculative loads are never allowed to leave the L1
cache, so we do not need to enforce any order in other levels of the
memory hierarchy. In addition, we will assume that the L1 cache
itself is fully pipelined, hence preventing port contention from being
used as a priority inversion vector. This leaves the problem of MSHR
allocations, as discussed in Section IV-A.

There are two possible solutions that can prevent younger specula-
tive loads from delaying older memory operations by allocating all
available MSHR targets. The first and most obvious one is to simply
guarantee that no speculative load will allocate any MSHR targets
before it becomes non-speculative. This is similar to the approach we
took for non-pipelined FUs (Section IV-B) and has the disadvantage
that it will no longer be possible to coalesce speculative loads with
existing non-speculative memory operations, which limits MLP and
can have negative performance ramifications (Section V).

The second solution is to preempt existing speculatively-allocated
MSHR targets if an older memory operation (speculative or not)
needs to allocate a target. Under DoM, speculative loads need to be
replayed in the L1 cache when they become non-speculative, either
to re-request data (if the original speculative request was dropped
because of a miss in the L1) or to update non-critical-path components
of the cache, such as the replacement policy or the prefetcher, which
cannot be done while the load is speculative. Since the provision for
speculative loads to be replayed exists anyway, we can easily drop a
target allocated for a speculative load without the additional overhead
of rescheduling the load. Loads that are issued while they are already
non-speculative are not replayed, but since we are only interested in
preventing speculative loads from interfering with non-speculative
instructions, we do not need to preempt existing MSHR targets from
non-speculative loads to begin with.

In addition, the targets of each MSHR entry are stored in simple
memories which, unlike the complex FUs we were discussing earlier,
are easy to reset. As we will see in the next section (Section V),
preemption is the better approach, as in practice the cases where we
actually need to preempt an allocated MSHR target are very rare.

It should be noted that with the MSHR allocation policy the priority
comparison (which memory operation is older) happens outside the
IQ, so we can no longer depend on the age-based IQ implementation.
Instead we can determine the order of loads using their position in
the ROB or the load queue, using an additional bit to handle the
cases where the head and tail pointers (assuming a circular buffer
implementation) have wrapped around [9].

V. EVALUATION

We use gem5 [7] and the SPEC2006 benchmark suite [20], using
simpoints collected with ScarPhase [18]. The main simulation
parameters can be found in Table I. As the changes in performance
are insignificant and we have not introduced any significant hardware
changes, there will also be no significant changes to the energy
usage of the applications. For this reason, we will focus only on the
performance (instructions per cycle – IPC) and we will not include
the energy evaluation. We will present the following alternatives:

• Delay-on-Miss baseline – As our goal is not to evaluate Delay-
on-Miss but ways to prevent speculative interference attacks on
existing solutions for secure speculative execution, we use an
already secured system as our baseline.
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Fig. 1. Performance (IPC) normalized to the baseline DoM implementation. Note that the y-axis has been truncated to the range [0.8, 1.0].

TABLE I
THE SIMULATED SYSTEM PARAMETERS.

Parameter Value
Technology node 22nm @ 3.4GHz
Issue / Execute / Commit width 8
Cache line size 64 bytes
L1 private cache size 32KiB, 8-way
L1 access latency 2 cycles
L2 shared cache size 1MiB, 16-way
L2 access latency 20 cycles
Simpoint length 100 million instructions
Fast warmup 990 million instructions
Detailed warmup 10 million instructions

• MSHRs: no coalescing – This version changes the MSHR allo-
cation policy under DoM, disallowing coalescing of speculative
loads with existing non-speculative loads (Section IV-C).

• MSHRs: preemption – This version allows coalescing for
speculative loads with non-speculative loads but preempts MSHR
targets when necessary (Section IV-C).

• FUs: in-order non-pipelined – This version changes the issue
policy to make sure instructions to the same non-pipelined FU
are always issued in order (Section IV-B). We have evaluated
two versions: one were each non-pipelined instruction is issued
in order only relative to other instructions of the same type (each
non-pipelined instruction type has its own queue) and one where
all non-pipelined instructions are issued in order relative to one
another (all non-pipelined instruction go into the same queue).
There is no observable performance difference between these
two version, so we will not discuss them separately.

• Preemption + in-order – This version simply combines the
policies from the MSHRs: preemption and FUs: in-order non-
pipelined versions, protecting DoM from the interference attacks
we have discussed.

Figure 1 contains the results sorted by the performance when load
coalescing is disallowed (version “MSHRs: no coalescing”). We
start with the MSHR allocation policy first as it is the only change
that actually introduces any performance overheads. We observe
that the majority of the benchmarks are not affected negatively by
this, with some, GemsFDTD (+6% IPC) and leslie3d (+2%),
actually benefiting, due to the filtering effect of not allocating MSHR
targets for targets that will end up being squashed. However, there
are a few benchmarks that are negatively affected, with the worst
one being libquantum (−12% IPC), which is an MLP sensitive
streaming benchmark, followed by sphinx (−6%), cactusADM
(−3%), soplex (−2%), and lbm (−1%).

On the other hand, if we allow speculative MSHR target allocations
and instead preempt speculative targets when a higher priority target
needs to be allocated (version “MSHRs: preemption”), we see no
observable performance difference across all the benchmarks. Our data
(not shown) indicates that the times when a preemption is actually
needed are very rare (less than one in a million for some benchmarks),

which explains why there are no performance overheads.
We can observe the same results in the case where we enforce in-

order issue for all non-pipelined FUs (“FUs: in-order non-pipelined”).
The cases where a younger instruction is ready to be executed but has
to be delayed are rare and do not affect the overall performance of
the applications. This included both the case where each instruction
type has a separate queue and the case where we have only two
queues, one for all non-pipelined instructions and one for the rest.
As a worst case scenario, we also evaluated a version (not shown)
where we enforce the issue order of all instructions, non-pipelined or
not, including all integer ALU operations. This was the only version
where we observed significant performance degradation but, since
such strict measures are not necessary for security (Section III), we
do not need to consider it as a potential implementation.

Finally, by combining “FUs: in-order non-pipelined” and “MSHRs:
preemption” into the “Preemption + in-order” version, we can
protect DoM from the interference attacks we have discussed, without
introducing any additional performance overheads.

VI. CONCLUSION

The problem of speculative interference attacks, which can bypass
existing state-of-the-art speculative attack defenses, stems from the
fact that the instruction scheduler, eager to extract as much parallelism
from the instruction stream as possible, allows for priority inversions
to happen between instructions in the instruction queue. This forces
us to revise current defense mechanisms, but as priority inversion is
a known problem, we can draw on the existing collective knowledge
for solutions, keeping in mind that we are constrained by very strict
timing and overhead requirements. Using one of the current speculative
defence mechanisms, Delay-on-Miss, we show how the speculative
interference problem can be framed as a priority inversion problem and
what some of the constraints are when trying to solve it. We propose
case-specific solutions and evaluate them, showing that as long as
we take into consideration the requirements and characteristics of
each interference mechanism, it is possible to shield existing defences
against speculative interference without additional overheads.

While we have focused on Delay-on-Miss as a use case, our
solutions can be applied on other defenses that also suffer from
the same issues. In addition, if more interference mechanisms are
discovered in the future, we can use the same principles to devise
solutions for those as well, enabling more secure systems in the future.
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