
High-Speed, Energy-Efficient
2-Cycle Multiply-Accumulate Architecture

Tung Thanh Hoang, Magnus Själander, and Per Larsson-Edefors
VLSI Research Group, Department of CSE, Chalmers University of Technology

SE-412 96 Gothenburg, Sweden. Email: {hoangt,hms,perla}@chalmers.se

Abstract—
We propose a high-speed and energy-efficient 2-cycle Multiply-

Accumulate (MAC) architecture. Our architecture is based on
two’s complement representation, it uses guarding bits to ef-
ficiently support longer MAC loops, and it includes output
saturation. By performing carry propagation only in the second
stage of the MAC pipeline, multiplication and accumulation have
similar delays. But in contrast to previous MAC architectures that
propose to only use one carry-propagation stage, our architecture
requires no extra cycles to produce the final result. Instead it
correctly produces the sum of the accumulated value and the
product in each cycle. Our place-and-route evaluation shows that
the proposed architecture, averaged across several operand sizes,
offers a 33% improvement in speed and a 37% reduction of
energy over a conventional 2-cycle MAC architecture.

I. INTRODUCTION

The Multiply-Accumulate (MAC) unit is a common accel-
erator that is extensively used in microprocessors and digital
signal processors for data-intensive applications. For exam-
ple, many filters, orthogonal frequency-division multiplexing,
channel estimation etc. require FIR or FFT/IFFT computations
that can be efficiently accelerated by dedicated MAC units.

In general, MAC architectures are based on a multiplier,
whose output is added to the previous MAC output result by
an accumulate adder (Fig. 1). For the purpose of high speed,
the multiplier is typically comprising a chain of a partial-
product unit (the PP unit) and a carry-propagate adder (the
final adder).

To increase MAC performance, we can cut down the critical
path delay by inserting an extra pipeline register, either inside
the PP unit or between the PP unit and the final adder [1],
leading to a 3-cycle MAC architecture (Fig. 1). However,
pipelining comes at the cost of increased latency and an
overhead in terms of energy and area1.

Since the multiplier is much more complex than the ac-
cumulate adder, many design techniques have focused on
reducing multiplier delay, either in the PP unit or in the
final adder. Inside the PP unit, we may target the Partial-
Product Generation (PPG) by using, e.g. the modified-Booth
algorithm [2] or some of its successors [3]. As for the Partial-
Product Reduction Tree (PPRT) of the PP unit, high-speed
compressors2 [4] and speed-optimized structures [5] have been

1If very low energy is the primary target, 1-cycle MAC operations could be
considered. However, the long delay of a 1-cycle MAC unit is a very limiting
factor in most applications.

2The simplest 3:2 compressor being the full adder.

PP unit

S
T
A
G
E
 - 1

S
T
A
G
E
 - 2

S
T
A
G
E
 - 3

Pipeline REG_MULT-AccumulateAdder

REG_Accumulate

X[N-1:0] Y[N-1:0]

S
[2
N
-5
:0
]

C
[2
N
-5
:0
]

M[2N-1:0]

R[2N-1:0]

M[2N+Ng-1:0]F[2N+Ng-1:0]

Accumulate adder

Saturation unit

Sign extension

P[0]

Carry-propagation adder (Final adder)

G[2N+Ng-1:0]

P[2N-1:1]

P
P
[1
][
1
]

P
P
[1
][
0
]

P
P
[N
-1
][
N
-1
]

P
P
[0
][
1
]

P
P
[0
][
0
]

Pipeline REG_PP

REG_X REG_Y

REG_Z

Fig. 1: Block diagram of a general MAC architecture. Here, the register
between the PPRT and the final adder is removed/inserted to obtain the 2/3-
cycle MAC architecture.

proposed. In [6], Ladner et al. proposed a sparse-tree carry
look-ahead adder for fast addition of the PP outputs, while
Liu et al. introduced a hybrid adder to reduce delay over the
design that assumed equal arrival time on all adder inputs [7].

By feeding back the multiplier output bits to the top of the
PPRT unit, the adder that traditionally handles accumulation
can be removed [8], [9], [10]. This way the accumulation is
handled by the final adder of the multiplier. The problem with
this approach is that it is only applicable to 1-cycle MACs. If
a pipeline register would be inserted, the MAC output will no
longer produce the correct result in each cycle. In fact, to get
the final MAC result, we would have to add an extra, empty
cycle after the final MAC cycle of a loop.

We propose to combine the following two, somewhat conflict-
ing features:
• The accumulation should take place in the second stage

of a 2-cycle MAC unit.
• The carry should be propagated only once in a MAC

pipeline, thus, in the second stage.
As Sec. II will show, we can obtain a number of advantages
with the new approach:
• Carry propagation only takes place in the second stage,

which means that the multiplier’s final adder is elimi-
nated, leading to higher speed and lower energy.

• Since accumulation takes place inside the second stage

– A pipeline register located before the accumulation
stage has no impact on functionality. Regardless of
pipelining, our MAC unit will produce the correct
result in each cycle, and no extra cycles need to be
added at the end of the loops.

– Interconnects are localized, which simplifies routing,
decreases delay, and reduces energy dissipation.

• Because of the above advantages, we can support sev-
eral guarding bits, making longer loops feasible without
any overflow problems. The use of guarding bits in an
approach, where the accumulated value is fed back to
the PPRT’s input, would most certainly have a negative
impact on hardware complexity.

The remainder of this paper is organized as follows: Sec. II
describes our proposed MAC architecture and contrasts it to a
conventional architecture. Next, Sec. III provides an evaluation
with respect to performance, power/energy, and area. Finally,
we conclude this paper in Sec. IV.

II. PROPOSED MAC ARCHITECTURE

The proposed MAC architecture is shown in Fig. 2. The
final adder has been removed, and a carry-save adder has been
inserted after the pipeline registers. The maximum delay of
the carry-save adder is only that of a single full adder, which
means that the MAC’s critical path delay still depends on the
PP unit.

Fig. 3 shows the conventional way of performing a multiply-
accumulate operation, assuming that the Baugh-Wooley algo-
rithm [11]3 is used. First we compute the multiplication of
the two inputs. Then the result from this multiplication is
sign extended, so that it has the same size as the accumulate
adder. Finally, the sign extended product is added to the stored
accumulated value. The disadvantage of this conventional
scheme is that P [2N − 1] in Fig. 3 needs to be computed and
used as sign extension for the second, accumulative addition.

In the carry-save adder of our scheme we do not need to
sign extend the multiplier output. We instead use a row of
’1’ to perform the sign extension, as shown in the circles in
Fig. 4.

3A modified-Booth scheme such as that in [3] can indeed be used, but
it offers no gain in terms of timing, but rather incurs a significant power
dissipation overhead [12].

PP unit

S
T
A
G
E
 - 1

S
T
A
G
E
 - 2REG_Accumulate

X[N-1:0] Y[N-1:0]

S
[2
N
-5
:0
]

C
[2
N
-5
:0
]

R[2N-1:0]

F[2N+Ng-1:0]

Accumulate adder

Saturation unit

M[0]

Carry-save adder (with sign extension)

G[2N+Ng-1:0]

P
P
[1
][
1
]

P
P
[1
][
0
]

P
P
[N
-1
][
N
-1
]

P
P
[0
][
1
]

P
P
[0
][
0
]

Pipeline REG_PP

REG_X REG_Y

REG_Z

K[2N+Ng-2:0]

M[2N+Ng-1:1]

G[2N+Ng-1:1]

G[0]

Fig. 2: Block diagram of the proposed MAC.

Our MAC architecture offers a number of advantages, in terms
of latency, speed, area, and energy:

• If we compare to a 2-cycle MAC (Fig. 1), the proposed
MAC architecture does not need the final adder.

• If we compare to a 3-cycle MAC (Fig. 1), our MAC
architecture also allows us to not only remove the final
adder but also to remove one pipeline register level —
and the corresponding clock energy—without degrading
speed.

• Because our MAC architecture is smaller than the con-
ventional MAC architectures, the smaller footprint will
lead to shorter interconnects.

III. EVALUATION

A. Evaluated architectures

We consider three architectures that share the same structure
for the PP unit, the final adder and the accumulate adder:

• MAC-2C : This conventional 2-cycle MAC has a critical
path that goes through the PP unit and the final adder.

• MAC-3C : This conventional 3-cycle MAC has a critical
path that is located inside the PP unit.

• MAC-NEW: Our proposed 2-cycle MAC exploits the
fact that the delay of the accumulate adder is shorter
than the delay of the PP unit, by at least an amount
corresponding to the delay of a full-adder cell.

Final adder

Accumulate adder

Sign extension with Ng bits

S
T
A
G
E
 - 1

S
T
A
G
E
 - 2

S
T
A
G
E
 - 3

S[2N-5:0]C[2N-5:0]

X[0]

Y[0]

X[1]

Y[1]Y[N-2]

X[N-2]

Y[N-1]

X[N-1]

PP[1][0] PP[0][0]PP[N-2][0]PP[N-1][0]

PP[0][1]PP[1][1]PP[N-2][1]PP[N-1][1]

1

PP[0][N-2]PP[1][N-2]PP[N-2][N-2]PP[N-1][N-2]

PP[0][N-1]PP[1][N-1]PP[N-2][N-1]PP[N-1][N-1]1

PP[1][1] PP[1][0] PP[N-1][N-1] PP[0][1]

P[0]P[1]P[2]P[2N-1] P[2N-2]

M[0]M[1]M[2]M[2N-1] M[2N-2]M[2N-1]M[2N-1]M[2N-1]

F[0]F[1]F[2]F[2N-1] F[2N-2]F[2N]F[2N+1]F[2N+Ng-1]

G[0]G[1]G[2]G[2N-1] G[2N-2]G[2N]G[2N+1]G[2N+Ng-1]

Partial Product Generation (PPG)

Partial Product Reduction

Tree (PPRT)

P
P
 u
n
it

Pipeline register

Pipeline register

Pipeline register

Fig. 3: A MAC operation using inputs X and Y , assuming the 3-cycle MAC of Fig. 1. The MAC operation starts with the generation (assuming the Baugh-
Wooley algorithm) and reduction of partial products. Carry propagation of the sums and carries, produced by the PP unit, is handled by the final adder. Finally,
the accumulate adder adds the pipelined products of the final adder (i.e., M) to the accumulated result (i.e., F), producing the new MAC result G.

HA FA FA FA FA HAHAXOR

P
P
[0
][
0
]

S
[0
]

FA

S
[1
]

C
[0
]

S
[2
N
-5
]

C
[2
N
-6
]

C
[2
N
-5
]

F
[1
]

K[
0]

G[2N+Ng-1:1]

M[0]K[
1] M[1]K[

2] M[2]
K[
2N
-3
]

M[2N-3]

K[
2N
-2
]

M[2N-2]
K[
2N
-1
]

M[2N-1]

K[
2N
+N
g-
2]

M[2N+Ng-2]M[2N+Ng-1] K[
3] M[3]

G[0]

K[2N+Ng-2:0] M[2N+Ng-1:1] M[0]

Accumulate adder

P
P
[0
][
1
]

P
P
[1
][
0
]

P
P
[1
][
1
]

P
P
[N
-1
][
N
-1
]

F
[0
]

F
[2
]

F
[3
]

F
[2
N
-3
]

F
[2
N
-2
]

F
[2
N
-1
]

F
[2
N
+
N
g
-2
]

F
[2
N
+
N
g
-1
]

Pipeline REG_PP

Pipeline REG_Accumulate

'1
'

'1
'

'1
'

Fig. 4: Logic structure of the carry-save adder.

Concerning the comparison of the MAC critical path delay,
we notice that MAC-2C and MAC-3C represent architectures
that put an upper and a lower bound, respectively, on critical
path delay.

B. Evaluation methodology

All PP units use Baugh-Wooley for partial-production gen-
eration and the HPM approach for partial-production reduction
tree [13]. The accumulate adder is of Sklansky type [6] and
has an extension of eight guarding bits. Finally, the final adder
in [14] is used to support fast addition of the PP outputs in
the case of MAC-2C and MAC-3C.

The VHDL codes were developed for MAC-2C, MAC-3C
and MAC-NEW, using several different sizes of the input
data. We synthesized the VHDL codes using Synopsys Design
Compiler, using a commercial 65-nm standard-VT library, at
1.1 V and with the worst-case corner. To avoid biasing the
evaluation, we use a bottom-up synthesis method, meaning
that the PP unit, the final adder and the accumulate adder are
synthesized individually. Since the MAC-NEW turns out to

have the smallest area, probably this design is at a disadvan-
tage in our evaluation.

All MAC netlist files were subsequently verified by using
logic simulation, after which they were taken through Place
and route in Cadence SoC Encounter. Delay of individual units
of each architecture was extracted using Synopsys PrimeTime.
Power dissipation was estimated through a value change dump
(VCD) analysis involving 20,000 random test vectors using RC
extracted data from SoC Encounter.

C. Evaluation results and discussion

Table I presents the detailed results of our evaluation. The
average values at the bottom rows of the tables are also
presented as normalized values, using MAC-2C as reference.

Since the critical path is through the PP unit for all three
designs and our proposed architecture uses pipeline registers at
the bottom of the PP unit, MAC-NEW obviously can operate
at the same speed as MAC-3C, while its performance on
average—for various operand sizes— is 33% faster than MAC-
2C. As far as power dissipation is concerned, because the final

TABLE I: Evaluation results of three architectures for 16, 32, 48, and 64 bits in operand size.
Delay of units (ps)

Operand Architecture PP Final Final Critical path Power Energy Cell area
size adder MAC stage∗ delay (ps) (mW) (pJ)∗∗ (µm2)

MAC-2C 1317 597 1039 1914 6.9 13.2 12937
16 MAC-3C 1312 621 1039 1312 10.3 13.5 13711

MAC-NEW 1312 NA 1247 1312 8.2 10.7 12014
MAC-2C 1671 701 1110 2372 17.1 46.7 42216

32 MAC-3C 1664 711 1110 1664 21.2 35.2 43545
MAC-NEW 1664 NA 1318 1664 19.8 32.9 39357

MAC-2C 1976 884 1089 2860 30.4 87.0 84894
48 MAC-3C 1931 925 1089 1931 38.3 74.0 86898

MAC-NEW 1931 NA 1297 1931 32.3 62.3 82696
MAC-2C 2090 824 1242 2914 54.6 159.1 149121

64 MAC-3C 2082 848 1242 2082 62.1 129.3 152179
MAC-NEW 2082 NA 1450 2082 41.6 86.6 142942

MAC-2C 2605 (100%) 27.3 (100%) 71.0 (100%) 72292 (100%)
Average MAC-3C 1747 (67%) 33.0 (121%) 57.6 (81%) 74083 (102%)

MAC-NEW 1747 (67%) 25.5 (93%) 44.5 (63%) 69252 (96%)
(*) Here, the delay of the final MAC stage is the cumulative delay of the extended accumulate adder and the saturation unit for MAC-2C
and MAC-3C. For MAC-NEW we here include the 239-ps delay of the carry-save adder, which is equal to the delay of a single full-adder.
(**) Energy dissipation is here defined per cycle, i.e. as the product of critical path delay and power dissipation.

adder is replaced by the simple carry-save adder, MAC-3C on
average dissipates 29% more power than MAC-NEW for the
same operating frequency and timing constraint.

We use energy dissipation to simultaneously capture power
and performance for the considered architectures: averaged
across the four operand sizes, MAC-NEW dissipates 37% and
23% less energy than MAC-2C and MAC-3C, respectively.

In terms of cell area, the proposed MAC architecture on
average results in 4% and 7% smaller footprint than MAC-2C
and MAC-3C, respectively.

Finally, we notice that the delay ratio between the PP
unit and the accumulate adder increases for larger operand
sizes (the ratio being in the range of 1.05–1.44), so extra
guarding bits could be accommodated for large operands to
support longer iteration computations without any performance
degradation.

IV. CONCLUSION

We have described a novel high-speed and energy-efficient
2-cycle Multiply-Accumulate (MAC) architecture. We pro-
posed removing the final adder of the multiplier, and instead
use a simple carry-save adder inside the accumulate stage.
The evaluation shows that our 2-cycle architecture is both
faster and more efficient in terms of area and energy than a
conventional 2-cycle MAC unit. Also, the evaluation shows
that our architecture, while only requiring two cycles for
completing the MAC computation, still performs the MAC
operation at the same top operating frequency as a 3-cycle
MAC unit, at a lower energy dissipation.

V. ACKNOWLEDGMENT

The authors wish to thank members of VLSI research group
at Chalmers University of Technology who have reviewed and
commented to this work

REFERENCES

[1] S. Kim, C. H. Ziesler, and M. C. Papaefthymiou, “Fine-grain real-time
reconfigurable pipelining,” IBM J. Research and Development, vol. 47,
no. 5-6, pp. 599–609, September 2003.

[2] O. L. MacSorley, “High-speed arithmetic in binary computers,” Proc. of
IRE, vol. 49, January 1961.

[3] W.-C. Yeh and C.-W. Jen, “High-speed Booth encoded parallel multiplier
design,” IEEE Trans. on Computers, vol. 49, no. 7, pp. 692–701, July
2000.

[4] M. R. Santoro and M. A. Horowitz, “SPIM: A pipeline 64x64 bit
iterative multiplier,” IEEE J. Solid-State Circuits(JSSC), vol. 2, no. 1,
pp. 487–493, April 1989.

[5] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed
optimized partial product reduction and generation of fast parallel
multipliers using an algorithmic approach,” IEEE Trans. on Computers,
vol. 45, no. 3, pp. 294–306, March 1996.

[6] R. Ladner and M. Fisher, “Parallel prefix computation,” J. of the
Association for Computer Machinery, vol. 27, no. 4, pp. 831–838,
October 1980.

[7] J. Liu, S. Zhou, H. Zhu, and C.-K. Cheng, “An algorithmic approach
for generic parallel adders,” in Proc. of IEEE International Conference
on Computer Aided Design (ICCAD), December 2003, pp. 734–740.

[8] P. F. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate
operation in multiplication time,” in Proc. of 13th International Sympo-
sium on Computer Arithmetic (ARITH), July 1997, pp. 99–106.

[9] J. Großschädl and G.-A. Kamendje, “A single-cycle (32x32+32+64)-bit
multiply/accumulate unit for digital signal processing and public-key
cryptography,” in Proc. of IEEE International Conference on Electronics,
Circuits and Systems (ICECS), December 2008, pp. 739–742.

[10] A. Abdelgawad and M. Bayoumi, “High speed and area-efficient Multi-
ply Accumulate (MAC) unit for digital signal prossing applications,”
in Proc. of IEEE International Symposium on Circuits and Systems
(ISCAS), May 2007, pp. 3199–3202.

[11] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Trans. on Computers, vol. 22, pp. 1045–
1047, December 1973.

[12] M. Själander and P. Larsson-Edefors, “High-speed and low-power mul-
tipliers using the Baugh-Wooley algorithm and HPM reduction tree,”
in Proc. of IEEE International Conference on Electronics, Circuits and
Systems (ICECS), August 2008, pp. 33–36.

[13] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M. Själander, D. Jo-
hansson, and M. Schölin, “Multiplier reduction tree with logarithmic
logic depth and regular connectivity,” in Proc. of IEEE International
Symposium on Circuits and Systems (ISCAS), May 2006, pp. 4–8.

[14] S. K. Mathew, M. A. Anders, B. Bloechel, T. Nguyen, R. K. Krish-
namurthy, and S. Borkar, “A 4-GHz 300-mW 64-bit integer execution

ALU with dual supply voltages in 90-nm CMOS,” IEEE J. Solid-State
Circuits (JSSC), vol. 40, no. 1, pp. 44–51, January 2005.

